如圖,底面是平行四邊形的四棱錐P-ABCD,點(diǎn)E在PD上,且PE:ED=2:1,問:在棱PC上是否存在一點(diǎn)F,使BF∥平面AEC?證明你的結(jié)論.
考點(diǎn):直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:取棱PC的中點(diǎn)F,線段PE的中點(diǎn)M,連接BD.設(shè)BD∩AC=O.連接BF,MF,BM,OE.結(jié)合菱形的性質(zhì)及三角形中位線定理及面面平行的判定定理可得平面BMF∥平面AEC,進(jìn)而由面面平行的性質(zhì)得到BF∥平面AEC.
解答: 解:存在點(diǎn)F為PC的中點(diǎn),使BF∥平面AEC
理由如下:
取棱PC的中點(diǎn)F,線段PE的中點(diǎn)M,連接BD.設(shè)BD∩AC=O.
連接BF,MF,BM,OE.
∵PE:ED=2:1,F(xiàn)為PC的中點(diǎn),E是MD的中點(diǎn),
∴MF∥EC,BM∥OE.
∵M(jìn)F?平面AEC,CE?平面AEC,BM?平面AEC,OE?平面AEC,
∴MF∥平面AEC,BM∥平面AEC.
∵M(jìn)F∩BM=M,
∴平面BMF∥平面AEC.
又BF?平面BMF,
∴BF∥平面AEC.
點(diǎn)評:題考查的知識點(diǎn)是直線與平面平行的判定,關(guān)鍵是證得平面BMF∥平面AEC.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

1
0
1-(x-1)2
-x)dx=( 。
A、
π
8
-
1
2
B、
π
4
-
1
2
C、
π
8
D、1-
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y,z∈Z,且滿足x+y+z=3,x3+y3+z3=3,求x2+y2+z2所有可能的值組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓Σ的兩個(gè)焦點(diǎn)分別是F1(-2,0)、F2(2,0),并且經(jīng)過點(diǎn)P(
5
2
,-
3
2
).
(1)求橢圓Σ的標(biāo)準(zhǔn)方程;
(2)求∠F1PF2的平分線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,等腰梯形ABCD內(nèi)接于⊙O,AB∥CD.過點(diǎn)A作⊙O的切線交CD的延長線于點(diǎn)E.求證:∠DAE=∠BAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知Rt△ABC在平面α內(nèi),D是斜邊AB的中點(diǎn),DE⊥α,且DE=12cm,AC=8cm,BC=6cm,求EA、EB、EC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,長方體ABCD-A1B1C1D1中,AB=BC=a,AA1=2a.
(1)求證:平面AB1D1∥平面C1BD;
(2)求兩平面AB1D1與C1BD之間的距離.
(注:兩平行平面之間的距離是其中一個(gè)平面上任意一點(diǎn)到另一個(gè)平面的距離)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=loga(x-3a)(a>0,且a≠1),當(dāng)P(x,y)是函數(shù)y=f(x)圖象上的點(diǎn)時(shí),Q(x-a,-y)是函數(shù)y=g(x)圖象上的點(diǎn).?
(Ⅰ)求函數(shù)y=g(x)的解析式;?
(Ⅱ)當(dāng)x∈[a+3,a+4]時(shí),恒有f(x)-g(x)≤1,試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y的回歸方程為y=bx+a,若b=0.53,
.
x
=61.75,
.
y
=38.14,則回歸方程為
 

查看答案和解析>>

同步練習(xí)冊答案