已知數(shù)列是等差數(shù)列,且,

(1)求數(shù)列的通項(xiàng)公式; (2)令,求數(shù)列前n項(xiàng)和.

 

【答案】

(1)(2)

【解析】

試題分析:解:(1)數(shù)列{an}是等差數(shù)列,且a1=1,a1+a2+a3=12,設(shè)出公差為d,∴a1+a1+d+a1+2d=12,∴a1+d=4,可得2+d=4,解得d=2,∴an=a1+(n-1)d=1+(n-1)×2=2n+1,(2)數(shù)列{an}的通項(xiàng)公式為an=n?2n,設(shè)其前n項(xiàng)和為Sn,∴Sn=1?21+2?22+3?23+…+n?2n

2Sn=1?22+2?23+3?24+…+n?2n+1

①-②可得-Sn=21+22+23+…+2n-n?2n+1

∴-Sn=-2+22+23++…+2n -n?2n+1,

∴Sn=n×2n+1-2n+1+2=(n-1)2n+1+2;

考點(diǎn):等差數(shù)列,數(shù)列的求和

點(diǎn)評(píng):主要是考查了等差數(shù)列的定義,以及通項(xiàng)公式的運(yùn)用,以及錯(cuò)位相減法來(lái)求解數(shù)列的和,屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年浙江省杭十四中高一第二學(xué)期期中考試數(shù)學(xué) 題型:填空題

已知數(shù)列是等差數(shù)列,若,
,且,則_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年黑龍江省高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知數(shù)列是等差數(shù)列,,則首項(xiàng)                

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省高二5月第一次周考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知數(shù)列是等差數(shù)列,,數(shù)列的前n項(xiàng)和是,且.

(I)求數(shù)列的通項(xiàng)公式;

(II)求證:數(shù)列是等比數(shù)列;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省高三下學(xué)期三月月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

已知數(shù)列是等差數(shù)列,數(shù)列是等比數(shù)列,則的值為     .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河南省商丘市高三5月第三次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知數(shù)列{}是等差數(shù)列,且滿足:a1+a2+a3=6,a5=5;

數(shù)列{}滿足:(n≥2,n∈N﹡),b1=1.

   (Ⅰ)求

   (Ⅱ)記數(shù)列(n∈N﹡),若{}的前n項(xiàng)和為,求.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案