(12分)已知直線,直線,其中,

(1)求直線的概率;

(2)求直線的交點(diǎn)位于第一象限的概率.

 

【答案】

(1)

(2)直線的交點(diǎn)位于第一象限的概率為

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E1
x2
10
+
2y2
5
=1
 E2
x2
a2
+
2y2
b2
=1(a>b>0)
.E1與E2有相同的離心率,過點(diǎn)F(-
3
,0
)的直線l與E1,E2依次交于A,C,D,B四點(diǎn)(如圖).當(dāng)直線l過E2的上頂點(diǎn)時(shí),直線l的傾斜角為
π
6

(1)求橢圓E2的方程;
(2)求證:|AC|=|DB|;
(3)若|AC|=1,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•杭州二模)如圖,已知直線y=2x-2與拋物線x2=2py(p>0)交于M1,M2兩點(diǎn),直線y=
p
2
與y軸交于點(diǎn)F.且直線y=
p
2
恰好平分∠M1FM2
(I)求P的值;
(Ⅱ)設(shè)A是直線y=
p
2
上一點(diǎn),直線AM2交拋物線于另點(diǎn)M3,直線M1M3交直線y=
p
2
于點(diǎn)B,求
OA
OB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知直線l:y=2x與拋物線C:y=
14
x2交于A(xA,yA)、O(0,0)兩點(diǎn),過點(diǎn)O與直線l垂直的直線交拋物線C于點(diǎn)B(xA,yB).如圖所示.
(1)求拋物線C的焦點(diǎn)坐標(biāo);
(2)求經(jīng)過A、B兩點(diǎn)的直線與y軸交點(diǎn)M的坐標(biāo);
(3)過拋物線x2=2py的頂點(diǎn)任意作兩條互相垂直的直線,過這兩條直線與拋物線的交點(diǎn)A、B的直線AB是否恒過定點(diǎn),如果是,指出此定點(diǎn),并證明你的結(jié)論;如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省揚(yáng)州市安宜高中2010-2011學(xué)年高二上學(xué)期期末考試數(shù)學(xué)試題 題型:044

已知直線l的方程為x=-2,且直線lx軸交于點(diǎn)M,圓O:x2+y2=1與x軸交于A,B兩點(diǎn).

(1)過M點(diǎn)的直線l1交圓于P、Q兩點(diǎn),且圓孤PQ恰為圓周的,求直線l1的方程;

(2)求以l為準(zhǔn)線,中心在原點(diǎn),且與圓O恰有兩個(gè)公共點(diǎn)的橢圓方程;

(3)過M點(diǎn)作直線l2與圓相切于點(diǎn)N,設(shè)(2)中橢圓的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,求三角形△NF1F2面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l經(jīng)過直線5x-2y+3=0和5xy-9=0的交點(diǎn),且與直線2x+3y+5=0平行,求直線l方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案