設(shè)f(2x-1)=+1,則f(x)的定義域?yàn)?/P>
[ ]
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書(shū)) 題型:044
(1)已知f(x)為二次函數(shù),且f(2x+1)+f(2x-1)=16x2-4x+6,求f(x).
(2)已知函數(shù)f(x)=x2+bx+c,對(duì)任意實(shí)數(shù)t都有f(2+t)=f(2-t),試比較f(1),f(2),f(4)的大。
(3)設(shè)f(x)為定義在實(shí)數(shù)集R上的偶函數(shù),當(dāng)x≤-1時(shí),y=f(x)的圖象經(jīng)過(guò)點(diǎn)(-2,0),斜率為1的射線,又在y=f(x)的圖象中有一部分是頂點(diǎn)在(0,2),且經(jīng)過(guò)點(diǎn)(-1,1)的一段拋物線.試求函數(shù)f(x)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知定義在R上的奇函數(shù)f(x),設(shè)其導(dǎo)函數(shù)為f′(x),當(dāng)x∈(-∞,0)時(shí),恒有xf′(x)<f(-x),令F(x)=xf(x),則滿(mǎn)足F(3)>F(2x-1)的實(shí)數(shù)x的取值范圍是 ( )
A.(-1,2) B.(-1,)
C.(,2) D.(-2,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆河南省原名校聯(lián)盟高三上學(xué)期第一次摸底考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
對(duì)于實(shí)數(shù)a,b,定義運(yùn)算“﹡”:a﹡b=,設(shè)f(x)=(2x-1)﹡x,且關(guān)于x 的方程f(x)=m(m∈R)恰有三個(gè)互不相等的實(shí)數(shù)根,,,則++的取值范圍是___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆黑龍江虎林高中高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=alnx-x2+1.
(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實(shí)數(shù)a和b的值;
(2)若a<0,且對(duì)任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.
【解析】第一問(wèn)中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
第二問(wèn)中,利用當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),
不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1,
即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導(dǎo)數(shù)的知識(shí)來(lái)解得。
(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
(2)當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),
不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,
令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),
∵g′(x)=-2x+1=(x>0),
∴-2x2+x+a≤0在x>0時(shí)恒成立,
∴1+8a≤0,a≤-,又a<0,
∴a的取值范圍是
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com