袋中裝著標(biāo)有數(shù)字1,2,3,4的卡片各1張,從袋中任取2張卡片(每張卡片被取出的可能性都相等),并記下卡面數(shù)字和為X,然后把卡片放回,叫做一次操作.某人進(jìn)行四次操作,則至少有兩次X不大于EX的概率為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
D
分析:確定X可能的取值,得到X的數(shù)學(xué)期望E(X),求出“一次操作所計分?jǐn)?shù)X不大于E(X)”的事件的概率,則四次操作中事件C發(fā)生次數(shù)為Y,則Y~B(4,),服從二項分布,故可求至少有兩次X不大于E(X)的概率.
解答:由題設(shè)知,X可能的取值為:3,4,5,6,7.
隨機(jī)變量X的概率分布為
X 3 4 5 6 7 P 因此X的數(shù)學(xué)期望E(X)=(3+4+6+7)×+5×=5.
記“一次操作所計分?jǐn)?shù)X不大于E(X)”的事件記為C,
則P(C)=P(“X=3”或“X=4”或“X=5”)==
設(shè)四次操作中事件C發(fā)生次數(shù)為Y,則Y~B(4,
則所求事件的概率為P(Y≥2)=1-××(3-×(4=
故選D.
點評:本題考查離散型隨機(jī)變量的期望,考查二項分布,解題的關(guān)鍵是正確求得隨機(jī)變量的取值以及每個值的概率,熟練掌握求離散型隨機(jī)變量的概率分布的方法步驟.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

袋中裝著標(biāo)有數(shù)字1,2,3,4的卡片各1張,甲從袋中任取2張卡片(每張卡片被取出的可能性都相等),并記下卡面數(shù)字和為X,然后把卡片放回,叫做一次操作.
(1)求在一次操作中隨機(jī)變量X的概率分布和數(shù)學(xué)期望E(X);
(2)甲進(jìn)行四次操作,求至少有兩次X不大于E(X)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個,從袋中任取3個小球,按3個小球上最大數(shù)字的9倍計分,每個小球被取出的可能性都相等.用ξ表示取出的3個小球上的最大數(shù)字,求:
(1)取出的3個小球上的數(shù)字互不相同的概率;
(2)隨機(jī)變量ξ的概率分布和數(shù)學(xué)期望;
(3)計分介于20分到40分之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個,現(xiàn)從袋中任意取出3個小球,假設(shè)每個小球被取出的可能性都相等.
(Ⅰ)求取出的3個小球上的數(shù)字分別為1,2,3的概率;
(Ⅱ)求取出的3個小球上的數(shù)字恰有2個相同的概率;
(Ⅲ)用X表示取出的3個小球上的最大數(shù)字,求P(X≥4)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋中裝著標(biāo)有數(shù)字1,2,3,4的卡片各1張,從袋中任取2張卡片(每張卡片被取出的可能性都相等),并記下卡面數(shù)字和為X,然后把卡片放回,叫做一次操作.某人進(jìn)行四次操作,則至少有兩次X不大于EX的概率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋中裝著標(biāo)有數(shù)字1,2,3,4的小球各3個,從袋中任取3個小球,每個小球被取出的可能性都相等.
(Ⅰ)求取出的3個小球上的數(shù)字互不相同的概率;
(Ⅱ)用X表示取出的3個小球上所標(biāo)的最大數(shù)字,求隨機(jī)變量X的分布列和均值.

查看答案和解析>>

同步練習(xí)冊答案