將正方形ABCD沿對角線BD折成直二面角,有如下四個結(jié)論:

①AC⊥BD;②是等邊三角形;③所成的角為;④與平面的角。

其中正確的結(jié)論的序號是

 

【答案】

①②③

【解析】

試題分析:根據(jù)已知中正方形ABCD沿對角線BD折成直二面角,我們以O(shè)點為坐標(biāo)原點建立空間坐標(biāo)系,求出ABCD各點坐標(biāo)后,進而可以求出相關(guān)直線的方向向量及平面的法向量,然后代入線線夾角,線面夾角公式,及模長公式,分別計算即可得到答案.解:連接AC與BD交于O點,對折后如圖所示,令OC=1

則O(0,0,0),A(1,0,0),B(0,1,0),C(0,0,1),D(0,-1,0)可知向量AC垂直與向量BD,故可知①正確,同時利用兩點的距離公式得到AD=DC=CA,故該三角形是等邊三角形,成立,對于所成的角為;根據(jù)向量的夾角公式得到成立,而與平面的角。故填寫①②③

考點:空間中直線與平面之間的位置關(guān)系

點評:本題以平面圖形的翻折為載體,考查空間中直線與平面之間的位置關(guān)系,根據(jù)已知條件構(gòu)造空間坐標(biāo)系,將空間線線夾角,線面夾角轉(zhuǎn)化為向量的夾角問題是解題的關(guān)鍵

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為1的正方形ABCD沿對角線AC對折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為
2
π
3
2
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:福州一中高三數(shù)學(xué)模擬試卷(一)(文科) 題型:013

邊長為1的正方形ABCD沿對其角線BD將△BDC折起得到三棱錐C-ABD,若三棱錐C-ABD的體積為,則直線BC與平面ABD所成角的正弦值為

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

將邊長為1的正方形ABCD沿對角線AC對折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年四川省成都市石室中學(xué)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

將邊長為1的正方形ABCD沿對角線AC對折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年四川省成都市石室中學(xué)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

將邊長為1的正方形ABCD沿對角線AC對折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為   

查看答案和解析>>

同步練習(xí)冊答案