2.如圖,在一張長(zhǎng)為2a米,寬為a米(a>2)的矩形鐵皮的四個(gè)角上,各剪去一個(gè)邊長(zhǎng)是x米(0<x≤1)的小正方形,折成一個(gè)無(wú)蓋的長(zhǎng)方體鐵盒,設(shè)V(x)表示鐵盒的容積.
(1)試寫出V(x)的解析式;
(2)記y=$\frac{V(x)}{x}$,當(dāng)x為何值時(shí),y最。坎⑶蟪鲎钚≈担

分析 (1)利用小反彈的體積公式,寫出V(x)的解析式;
(2)記y=$\frac{V(x)}{x}$,利用配方法,即可得到當(dāng)x為何值時(shí),y最小,并求出最小值.

解答 解:(1)由題意,V(x)=(2a-2x)(a-2x)x(0<x≤1);
(2)y=$\frac{V(x)}{x}$=(2a-2x)(a-2x)=$4(x-\frac{3}{4}a)^{2}-\frac{1}{4}{a}^{2}$,
∵a>2,0<x≤1,∴x=1時(shí),y最小,最小值為2(a-1)(a-2).

點(diǎn)評(píng) 本題考查利用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題,考查配方法的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)方程f(x,y)=0的解集非空.如果命題“坐標(biāo)滿足方程f(x,y)=0的點(diǎn)都在曲線C上”是不正確的,有下面5個(gè)命題:
①坐標(biāo)滿足f(x,y)=0的點(diǎn)都不在曲線C上;
②曲線C上的點(diǎn)的坐標(biāo)都不滿足f(x,y)=0;
③坐標(biāo)滿足f(x,y)=0的點(diǎn)不都在曲線C上;
④一定有不在曲線C上的點(diǎn),其坐標(biāo)滿足f(x,y)=0;
⑤坐標(biāo)滿足f(x,y)=0的點(diǎn)有些在曲線C上,有些不在曲線C上.
則上述命題正確的是③④.(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知△ABC三邊分別為a,b,c,且a2+c2=b2+ac,則邊b所對(duì)應(yīng)的角B大小為60°;此時(shí),如果AC=2$\sqrt{3}$,則$\overrightarrow{AB}$$•\overrightarrow{AC}$的最大值為6+4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知x>0,y>0,且x2-2xy+4y2=1.
(Ⅰ)求證:x+2y≤2;
(Ⅱ)求y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若a=log32,b=20.3,c=log${\;}_{\frac{1}{5}}$2,則a,b,c的大小關(guān)系用“<”表示為c<a<b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.命題“?x0∈(0,+∞),lnx0=x0-1”的否定是( 。
A.?x∈(0,+∞),lnx≠x-1B.?x∉(0,+∞),lnx=x-1
C.?x0∈(0,+∞),lnx0≠x0-1D.?x0∉(0,+∞),lnx0=x0-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若關(guān)于x的方程x+b=3-$\sqrt{4x-{x^2}}$只有一個(gè)解,則實(shí)數(shù)b的取值范圍是(-1,3]∪{1-2$\sqrt{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y=2x-4,設(shè)圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x-3上,過(guò)點(diǎn)A作圓C的切線,求切線方程;
(2)若圓C上存在點(diǎn)M,使|MA|=2|MO|,求圓心C的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.己知直線2x-y-4=0與直線x-2y+1=0交于點(diǎn)p.
(1)求過(guò)點(diǎn)p且垂直于直線3x+4y-15=0的直線l1的方程;(結(jié)果寫成直線方程的一般式)
(2)求過(guò)點(diǎn)P并且在兩坐標(biāo)軸上截距相等的直線l2方程(結(jié)果寫成直線方程的一般式)

查看答案和解析>>

同步練習(xí)冊(cè)答案