已知F是雙曲線-=1的左焦點,A(1,4),P是雙曲線右支上的動點,則|PF|+|PA|的最小值為    .
9
-=1知c2=4+12=16,
c=4.
∴左焦點F(-4,0),設雙曲線右焦點為F′(4,0),
∵點P在雙曲線右支上,
∴|PF|-|PF′|=2a=4,
∴|PF|=4+|PF′|,
∴|PF|+|PA|=4+|PF′|+|PA|.
由圖可知,當A、P、F′三點共線時,|PF′|+|PA|最小,此時,
(|PF|+|PA|)min=4+(|PF′|+|PA|)min
=4+|AF′|
=4+
=4+5
=9.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線的漸進線方程為,且焦距為10,則雙曲線方程為(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線-=1的一個焦點與圓x2+y2-10x=0的圓心重合,且雙曲線的離心率等于,則該雙曲線的標準方程為    .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設雙曲線C的中心為點O,若有且只有一對相交于點O,所成的角為60°的直線A1B1和A2B2,使=,其中A1,B1和A2,B2分別是這對直線與雙曲線C的交點,則該雙曲線的離心率的取值范圍是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F1、F2為雙曲線C:x2-y2=1的左、右焦點,點P在C上,∠F1PF2=60°,則P到x軸的距離為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若雙曲線的離心率,則的取值范圍是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

P(x0,y0)(x0≠±a)是雙曲線E:-=1(a>0,b>0)上一點,M,N分別是雙曲線E的左,右頂點,直線PM,PN的斜率之積為.
(1)求雙曲線的離心率.
(2)過雙曲線E的右焦點且斜率為1的直線交雙曲線于A,B兩點,O為坐標原點,C為雙曲線上一點,滿足+,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線,),過其右焦點且垂直于實軸的直線與雙曲線交于兩點,為坐標原點,若,則雙曲線的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設P為直線y=x與雙曲線-=1(a>0,b>0)左支的交點,F1是左焦點,PF1垂直于x軸,則雙曲線的離心率e=    .

查看答案和解析>>

同步練習冊答案