【題目】知數(shù)列,,且直線

⑴求數(shù)列通項公式;

函數(shù),,求函數(shù)最小值;

設(shè)表示數(shù)列和,問:是否存在關(guān)于的整,使得于一切小于2的自然數(shù)成立?若存在,寫出解析式,并加以證明;若不存在,說明理由.

【答案】(1);(2)(3),證明見解析.

【解析】

試題分析:(1)將點代入直線得到,數(shù)列首項,公差的等差數(shù)列,再由得到的通項公式;(2)由(1)可得,

,單調(diào)遞增的,故最小值是(3)由(1)及,,即,,,最后將該式整理即可得出

試題解析:直線,即,,

數(shù)列首項,公差的等差數(shù)列,

滿足,

,

,

單調(diào)遞增的,故最小值是

,

,,

存在關(guān)于整式,使等式對于一切不小于自然數(shù)成立

二:先由情況,猜想出,再用數(shù)學歸納法證明.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知命題實數(shù)滿足 ;命題實數(shù)滿足.

(1)當時,若“”為真,求實數(shù)的取值范圍;

(2)若“非”是“非”的必要不充分條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電視臺舉行電視奧運知識大獎賽,比賽分初賽和決賽兩部分.為了增加節(jié)目的趣味性,

初賽采用選手選一題答一題的方式進行,每位選手最多有次選題答題的機會,選手累計答對題或答錯題即終止其初賽的比賽,答對題者直接進入決賽,答錯題者則被淘汰.已知選手甲答題的正確率為

(1) 求選手甲可進入決賽的概率;

(2) 設(shè)選手甲在初賽中答題的個數(shù)為,試寫出的分布列,并求的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè),曲線在點處的切線與直線垂直.

1)求的值;

(2)若對于任意的, 恒成立,求的取值范圍;

(3)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè),其中,曲線在點處的切線與軸相交于點.

(1)確定的值;

(2)求函數(shù)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(a>0,a≠1,m≠﹣1),是定義在(﹣1,1)上的奇函數(shù).

(I)求f(0)的值和實數(shù)m的值;

(II)當m=1時,判斷函數(shù)f(x)在(﹣1,1)上的單調(diào)性,并給出證明;

(III)若且f(b﹣2)+f(2b﹣2)>0,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=log2(1-x),g(x)=log2(x+1),設(shè)F(x)=f(x)-g(x).

(1)判斷函數(shù)F(x)的奇偶性;

(2)證明函數(shù)F(x)是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè)函數(shù)的圖象在點兩處的切線分別為l1,l2.若,且,求實數(shù)c的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),若存在實數(shù),使=成立,則稱的不動點.

⑴當時,求的不動點;

(2)當時,函數(shù)內(nèi)有兩個不同的不動點,求實數(shù)的取值范圍;

(3)若對于任意實數(shù),函數(shù)恒有兩個不相同的不動點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案