(09年山東省實(shí)驗(yàn)中學(xué)綜合測試?yán)?(12分)
一個(gè)均勻的正四面體的四個(gè)面上分別涂有1,2,3,4四個(gè)數(shù)字,現(xiàn)隨機(jī)投擲兩次,正
四面體面朝下的數(shù)字分別為,記.
(1)分別求出取得最大值和最小值時(shí)的概率;
(2)求的分布列及數(shù)學(xué)期望.
解析:(1)擲出點(diǎn)數(shù)可能是:
則分別得:于是的所有取值分別為:
因此的所有取值為:0,1,2,4,5,8.
當(dāng)且時(shí),可取得最大值,
此時(shí),;
當(dāng)且時(shí),可取得最小值.
此時(shí),.
(2)由(Ⅰ)知的所有取值為:0,1,2,4,5,8.
;
當(dāng)=1時(shí),的所有取值為(2,3)、(4,3)、(3,2)、(3,4).即;
當(dāng)=2時(shí),的所有取值為(2,2)、(4,4)、(4,2)、(2,4).
即;
當(dāng)=4時(shí),的所有取值為(1,3)、(3,1).即;
當(dāng)=5時(shí),的所有取值為(2,1)、(1,4)、(1,2)、(4,1).即.
所以ξ的分布列為:
ξ | 0 | 1 | 2 | 4 | 5 | 8 |
P |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(09年山東省實(shí)驗(yàn)中學(xué)綜合測試?yán)?在棱長為2的正方體中,G是的中點(diǎn),則到平面的距離是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年山東省實(shí)驗(yàn)中學(xué)綜合測試)某服裝加工廠某月生產(chǎn)、、三種產(chǎn)品共4000件,為了保證產(chǎn)品質(zhì)量,進(jìn)行抽樣檢
驗(yàn),根據(jù)分層抽樣的結(jié)果,企業(yè)統(tǒng)計(jì)員制作了如下的統(tǒng)計(jì)表格:
產(chǎn)品類別 | |||
產(chǎn)品數(shù)量(件) |
| 2300 |
|
樣本容量(件) |
| 230 |
|
由于不小心,表格中、產(chǎn)品的有關(guān)數(shù)據(jù)已被污染看不清楚,統(tǒng)計(jì)員記得產(chǎn)品的樣
本容量比產(chǎn)品的樣本容量多,根據(jù)以上信息,可得的產(chǎn)品數(shù)量是 ( )
A. 80 B. 800 C.90 D.900
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年山東省實(shí)驗(yàn)中學(xué)綜合測試)已知等差數(shù)列中,有,且它們的前項(xiàng)和有最大值,則使得的 的最大值為 ( )
A.11 B.19 C. 20 D.21
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年山東省實(shí)驗(yàn)中學(xué)綜合測試)在對兩個(gè)變量x,y進(jìn)行線性回歸分析時(shí),有下列步驟:
①對所求出的回歸直線方程作出解釋; ②收集數(shù)據(jù)
③求線性回歸方程; ④求相關(guān)系數(shù);
⑤根據(jù)所搜集的數(shù)據(jù)繪制散點(diǎn)圖.
如果根據(jù)可形性要求能夠作出變量x,y具有線性相關(guān)結(jié)論,則在下列操作順序中正確的
是 ( )
A.①②⑤③④ B.③②④⑤① C.②④③①⑤ D.②⑤④③①
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年山東省實(shí)驗(yàn)中學(xué)綜合測試)給出如下三個(gè)命題:
①若“p且q”為假命題,則p、q均為假命題;
②命題“若x≥2且y≥3,則x+y≥5” 的否命題為“若x<2且y<3,則x+y<5”;
③四個(gè)實(shí)數(shù)a、b、c、d依次成等比數(shù)列的必要而不充分條件是ad=bc;
④在△中,“”是“”的充分不必要條件.
其中不正確的命題的個(gè)數(shù)是 ( )
A.4 B.3 C.2 D.1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com