【題目】已知函數(shù)f(x)=ax2+bln x在x=1處有極值.
(1)求a,b的值;
(2)求函數(shù)y=f(x)的單調(diào)性.
【答案】(1);(2)見解析
【解析】
試題分析: (1)f′(x)=2ax+.由題意可得:,解得a,b.
(2)f(x)=x2-lnx,f′(x)=x﹣.函數(shù)定義域為(0,+∞).令f′(x)>0,f′(x)<0,分別解出即可得出單調(diào)區(qū)間.
試題解析:
(1)∵f′(x)=2ax+.又f(x)在x=1處有極值,
∴即解得a=,b=-1.
(2)由(1)可知f(x)=x2-lnx,其定義域是(0,+∞),
f′(x)=x-=.
由f′(x)<0,得0<x<1;由f′(x)>0,得x>1.
所以函數(shù)y=f(x)的單調(diào)減區(qū)間是(0,1),單調(diào)增區(qū)間是(1,+∞).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高三模擬考試的學(xué)生中隨機抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:
(1)求分數(shù)在[120,130)內(nèi)的頻率;
(2)若在同一組數(shù)據(jù)中,將該組區(qū)間的中點值(如:組區(qū)間[100,110)的中點值為=105)作為這組數(shù)據(jù)的平均分,據(jù)此,估計本次考試的平均分;
(3)用分層抽樣的方法在分數(shù)段為[110,130)的學(xué)生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有1人在分數(shù)段[120,130)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系xOy中,已知點P( ,1),直線l的參數(shù)方程為(t為參數(shù))若以O(shè)為極點,以O(shè)x為極軸,選擇相同的單位長度建立極坐標系,則曲線C的極坐標方程為ρ= cos(θ- )
(Ⅰ)求直線l的普通方程和曲線C的直角坐標方程;
(Ⅱ)設(shè)直線l與曲線C相交于A,B兩點,求點P到A,B兩點的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|﹣|x﹣3|.
(Ⅰ)解不等式f(x)≥1;
(Ⅱ)當﹣9≤x≤4時,不等式f(x)<a成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題為真命題的是( )
A. “若a=b,則|a|=|b|”的逆命題
B. 命題“x0∈R,x0+<2”的否定
C. “面積相等的三角形全等”的否命題
D. “若A∩B=B,則AB”的逆否命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,角A,B,C 所對的邊分別為a,b,c,已知bsinA= acosB.
(1)求角B 的值;
(2)若cosAsinC= ,求角A的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=﹣2cosx﹣x+(x+1)ln(x+1),g(x)=k(x2+ ).其中k≠0.
(1)討論函數(shù)g(x)的單調(diào)區(qū)間;
(2)若存在x1∈(﹣1,1],對任意x2∈( ,2],使得f(x1)﹣g(x2)<k﹣6成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)滿足,的虛部為,且在復(fù)平面內(nèi)對應(yīng)的點在第二象限.
(1)求復(fù)數(shù);
(2)若復(fù)數(shù)滿足,求在復(fù)平面內(nèi)對應(yīng)的點的集合構(gòu)成圖形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com