精英家教網 > 高中數學 > 題目詳情
6.復數z滿足z(2+i)=3-i,則復數z在復平面內對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 由z(2+i)=3-i,得$z=\frac{3-i}{2+i}$,再利用復數代數形式的乘除運算化簡復數z,求出復數z在復平面內對應的點的坐標,則答案可求.

解答 解:由z(2+i)=3-i,
得$z=\frac{3-i}{2+i}$=$\frac{(3-i)(2-i)}{(2+i)(2-i)}=\frac{5-5i}{5}=1-i$,
則復數z在復平面內對應的點的坐標為:(1,-1),位于第四象限.
故選:D.

點評 本題考查了復數代數形式的乘除運算,考查了復數的代數表示法及其幾何意義,是基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

16.已知函數y=log2$\frac{x}{8}$•log4$\frac{x}{2}$+$\frac{1}{2}$(2≤x≤2m,m>1,m∈R)
(1)求x=4${\;}^{\frac{2}{3}}$時對應的y值;
(2)求該函數的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.設x>0,則$x\sqrt{1-4{x^2}}$得最大值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知函數f(x)=lnx-mx(m∈R),g(x)=2f(x)+x2,h(x)=lnx-cx2-bx.
(1)求函數f(x)的單調區(qū)間;
(2)當$m≥\frac{{3\sqrt{2}}}{2}$時,g(x)的兩個極值點為x1,x2(x1<x2).
①證明:$0<\frac{x_1}{x_2}≤\frac{1}{2}$;
②若x1,x2恰為h(x)的零點,求$y=({x_1}-{x_2})h'(\frac{{{x_1}+{x_2}}}{2})$的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.如圖,在△ABC中,已知$\overrightarrow{AN}$=$\frac{1}{2}\overrightarrow{AC}$,P是BN上一點,若$\overrightarrow{AP}=m\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$,則實數m的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.如圖所示的程序框圖,輸出的值為( 。
A.$\frac{15}{16}$B.$\frac{15}{12}$C.$\frac{13}{8}$D.$\frac{13}{4}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.我們國家正處于老齡化社會中,老有所依也是政府的民生工程.某市共有戶籍人口400萬,其中老人(年齡60歲及以上)人數約有66萬,為了了解老人們的健康狀況,政府從老人中隨機抽取600人并委托醫(yī)療機構免費為他們進行健康評估,健康狀況共分為不能自理、不健康尚能自理、基本健康、健康四個等級,并以80歲為界限分成兩個群體進行統(tǒng)計,樣本分布被制作成如圖表:

(Ⅰ)若采用分層抽樣的方法再從樣本中的不能自理的老人中抽取8人進一步了解他們的生活狀況,則兩個群體中各應抽取多少人?
(Ⅱ)估算該市80歲及以上長者占全市戶籍人口的百分比;
(Ⅲ)據統(tǒng)計該市大約有五分之一的戶籍老人無固定收入,政府計劃為這部分老人每月發(fā)放生活補貼,標準如下:
①80歲及以上長者每人每月發(fā)放生活補貼200元;
②80歲以下老人每人每月發(fā)放生活補貼120元;
③不能自理的老人每人每月額外發(fā)放生活補貼100元.試估計政府執(zhí)行此計劃的年度預算.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.設{an}是等差數列,若a4+a5+a6=21,則S9=63.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.當x∈[0,2π]時,函數y=sinx的圖象與直線$y=-\frac{3}{4}$的公共點的個數為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案