【題目】已知函數(shù).

1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;

2)若函數(shù)有兩個(gè)不同極值點(diǎn),求實(shí)數(shù)的取值范圍;

3)當(dāng)時(shí),求證:對(duì)任意,恒成立.

【答案】123)見解析

【解析】

1)當(dāng)時(shí),求導(dǎo)數(shù),將切點(diǎn)橫坐標(biāo)帶入導(dǎo)數(shù)得到斜率,再計(jì)算切線方程.

2)求導(dǎo),取導(dǎo)數(shù)為0,參數(shù)分離得到,設(shè)右邊為新函數(shù),求出其單調(diào)性,求得取值范圍得到答案.

3)將導(dǎo)函數(shù)代入不等式,化簡(jiǎn)得到,設(shè)左邊為新函數(shù),根據(jù)單調(diào)性得到函數(shù)最值,得到證明.

1)當(dāng)時(shí),

,又∵

,即

∴函 數(shù) 在點(diǎn)處的切線方程為

2)由題意知,函數(shù)的定義域?yàn)?/span>, ,

,可得,

當(dāng)時(shí),方程僅有一解,∴

則由題可知直線與函數(shù)的圖像有兩個(gè)不同的交點(diǎn).

∴當(dāng)時(shí),,為單調(diào)遞減函數(shù);

當(dāng)時(shí),,為單調(diào)遞增函數(shù).

又∵,且當(dāng)時(shí),

實(shí)數(shù)的取值范圍為

3)∵

∴要證對(duì)任意,恒成立

即證成立

即證成立

設(shè)

時(shí),易知上為減函數(shù)

上為減函數(shù)

成立

即對(duì)任意恒成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex-ax-1,其中e是自然對(duì)數(shù)的底數(shù),實(shí)數(shù)a是常數(shù).

(1)設(shè)a=e,求函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線方程;

(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】、滿足約束條件,若取得最大值的最優(yōu)解不唯一,則實(shí)數(shù)的值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)構(gòu)為了解某地區(qū)中學(xué)生在校月消費(fèi)情況,隨機(jī)抽取了100名中學(xué)生進(jìn)行調(diào)查.右圖是根據(jù)調(diào)查的結(jié)果繪制的學(xué)生在校月消費(fèi)金額的頻率分布直方圖.已知[350,450),[450,550),[550,650)三個(gè)金額段的學(xué)生人數(shù)成等差數(shù)列,將月消費(fèi)金額不低于550元的學(xué)生稱為高消費(fèi)群” .

(1)求m,n的值,并求這100名學(xué)生月消費(fèi)金額的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有90%的把握認(rèn)為高消費(fèi)群與性別有關(guān)?

高消費(fèi)群

非高消費(fèi)群

合計(jì)

10

50

合計(jì)

(參考公式:,其中

P()

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著智能手機(jī)的普及,各類手機(jī)娛樂軟件也如雨后春筍般涌現(xiàn). 如表中統(tǒng)計(jì)的是某手機(jī)娛樂軟件自2018年8月初推出后至2019年4月底的月新注冊(cè)用戶數(shù),記月份代碼為(如對(duì)應(yīng)于2018年8月份,對(duì)應(yīng)于2018年9月份,…,對(duì)應(yīng)于2019年4月份),月新注冊(cè)用戶數(shù)為(單位:百萬人)

(1)請(qǐng)依據(jù)上表的統(tǒng)計(jì)數(shù)據(jù),判斷月新注冊(cè)用戶與月份線性相關(guān)性的強(qiáng)弱;

(2)求出月新注冊(cè)用戶關(guān)于月份的線性回歸方程,并預(yù)測(cè)2019年5月份的新注冊(cè)用戶總數(shù).

參考數(shù)據(jù):,,.

回歸直線的斜率和截距公式:.

相關(guān)系數(shù)(當(dāng)時(shí),認(rèn)為兩相關(guān)變量相關(guān)性很強(qiáng). )

注意:兩問的計(jì)算結(jié)果均保留兩位小數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2名男生、3名女生,全體排成一行,問下列情形各有多少種不同的排法?(以下各題請(qǐng)用數(shù)字作答)

1)甲不在中間也不在兩端;

2)甲、乙兩人必須排在兩端;

3)男、女生分別排在一起;

4)男女相間;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的奇函數(shù)有最小正周期,且時(shí),.

(1)求上的解析式;

(2)判斷上的單調(diào)性,并給予證明;

(3)當(dāng)為何值時(shí),關(guān)于方程上有實(shí)數(shù)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一工廠生產(chǎn)了某種產(chǎn)品700件,該工廠需要對(duì)這些產(chǎn)品的性能進(jìn)行檢測(cè)現(xiàn)決定利用隨機(jī)數(shù)表法從中抽取100件產(chǎn)品進(jìn)行抽樣檢測(cè),將700件產(chǎn)品按001002,…,700進(jìn)行編號(hào)

1)如果從第8行第4列的數(shù)開始向右讀,請(qǐng)你依次寫出最先檢測(cè)的3件產(chǎn)品的編號(hào);(下面摘取了隨機(jī)數(shù)表的第79行)

84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79

33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54

2)檢測(cè)結(jié)果分為優(yōu)等、合格、不合格三個(gè)等級(jí),抽取的100件產(chǎn)品的安全性能和環(huán)保性能的檢測(cè)結(jié)果如下表(橫向和縱向分別表示安全性能和環(huán)保性能):

i)若在該樣本中,產(chǎn)品環(huán)保性能是優(yōu)等的概率為34%,求的值;

ii)若,求在安全性能不合格的產(chǎn)品中,環(huán)保性能為優(yōu)等的件數(shù)比不合格的件數(shù)少的概率.

件數(shù)

環(huán)保性能

優(yōu)等

合格

不合格

安全性能

優(yōu)等

6

20

5

合格

10

18

6

不合格

m

4

n

查看答案和解析>>

同步練習(xí)冊(cè)答案