【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)若函數(shù)有兩個(gè)不同極值點(diǎn),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),求證:對(duì)任意,恒成立.
【答案】(1)(2)(3)見解析
【解析】
(1)當(dāng)時(shí),求導(dǎo)數(shù),將切點(diǎn)橫坐標(biāo)帶入導(dǎo)數(shù)得到斜率,再計(jì)算切線方程.
(2)求導(dǎo),取導(dǎo)數(shù)為0,參數(shù)分離得到,設(shè)右邊為新函數(shù),求出其單調(diào)性,求得取值范圍得到答案.
(3)將導(dǎo)函數(shù)代入不等式,化簡(jiǎn)得到,設(shè)左邊為新函數(shù),根據(jù)單調(diào)性得到函數(shù)最值,得到證明.
(1)當(dāng)時(shí),.
∴
∴,又∵
∴,即
∴函 數(shù) 在點(diǎn)處的切線方程為.
(2)由題意知,函數(shù)的定義域?yàn)?/span>, ,
令,可得,
當(dāng)時(shí),方程僅有一解,∴,
∴
令
則由題可知直線與函數(shù)的圖像有兩個(gè)不同的交點(diǎn).
∵
∴當(dāng)時(shí),,為單調(diào)遞減函數(shù);
當(dāng)時(shí),,為單調(diào)遞增函數(shù).
又∵,,且當(dāng)時(shí),
∴,
∴
∴實(shí)數(shù)的取值范圍為.
(3)∵
∴要證對(duì)任意,恒成立
即證成立
即證成立
設(shè)
∴
∵時(shí),易知在上為減函數(shù)
∴
∴在上為減函數(shù)
∴
∴成立
即對(duì)任意,恒成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex-ax-1,其中e是自然對(duì)數(shù)的底數(shù),實(shí)數(shù)a是常數(shù).
(1)設(shè)a=e,求函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機(jī)構(gòu)為了解某地區(qū)中學(xué)生在校月消費(fèi)情況,隨機(jī)抽取了100名中學(xué)生進(jìn)行調(diào)查.右圖是根據(jù)調(diào)查的結(jié)果繪制的學(xué)生在校月消費(fèi)金額的頻率分布直方圖.已知[350,450),[450,550),[550,650)三個(gè)金額段的學(xué)生人數(shù)成等差數(shù)列,將月消費(fèi)金額不低于550元的學(xué)生稱為“高消費(fèi)群” .
(1)求m,n的值,并求這100名學(xué)生月消費(fèi)金額的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有90%的把握認(rèn)為“高消費(fèi)群”與性別有關(guān)?
高消費(fèi)群 | 非高消費(fèi)群 | 合計(jì) | |
男 | |||
女 | 10 | 50 | |
合計(jì) |
(參考公式:,其中)
P() | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著智能手機(jī)的普及,各類手機(jī)娛樂軟件也如雨后春筍般涌現(xiàn). 如表中統(tǒng)計(jì)的是某手機(jī)娛樂軟件自2018年8月初推出后至2019年4月底的月新注冊(cè)用戶數(shù),記月份代碼為(如對(duì)應(yīng)于2018年8月份,對(duì)應(yīng)于2018年9月份,…,對(duì)應(yīng)于2019年4月份),月新注冊(cè)用戶數(shù)為(單位:百萬人)
(1)請(qǐng)依據(jù)上表的統(tǒng)計(jì)數(shù)據(jù),判斷月新注冊(cè)用戶與月份線性相關(guān)性的強(qiáng)弱;
(2)求出月新注冊(cè)用戶關(guān)于月份的線性回歸方程,并預(yù)測(cè)2019年5月份的新注冊(cè)用戶總數(shù).
參考數(shù)據(jù):,,.
回歸直線的斜率和截距公式:,.
相關(guān)系數(shù)(當(dāng)時(shí),認(rèn)為兩相關(guān)變量相關(guān)性很強(qiáng). )
注意:兩問的計(jì)算結(jié)果均保留兩位小數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有2名男生、3名女生,全體排成一行,問下列情形各有多少種不同的排法?(以下各題請(qǐng)用數(shù)字作答)
(1)甲不在中間也不在兩端;
(2)甲、乙兩人必須排在兩端;
(3)男、女生分別排在一起;
(4)男女相間;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的奇函數(shù)有最小正周期,且時(shí),.
(1)求在上的解析式;
(2)判斷在上的單調(diào)性,并給予證明;
(3)當(dāng)為何值時(shí),關(guān)于方程在上有實(shí)數(shù)解?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一工廠生產(chǎn)了某種產(chǎn)品700件,該工廠需要對(duì)這些產(chǎn)品的性能進(jìn)行檢測(cè)現(xiàn)決定利用隨機(jī)數(shù)表法從中抽取100件產(chǎn)品進(jìn)行抽樣檢測(cè),將700件產(chǎn)品按001,002,…,700進(jìn)行編號(hào)
(1)如果從第8行第4列的數(shù)開始向右讀,請(qǐng)你依次寫出最先檢測(cè)的3件產(chǎn)品的編號(hào);(下面摘取了隨機(jī)數(shù)表的第7~9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)檢測(cè)結(jié)果分為優(yōu)等、合格、不合格三個(gè)等級(jí),抽取的100件產(chǎn)品的安全性能和環(huán)保性能的檢測(cè)結(jié)果如下表(橫向和縱向分別表示安全性能和環(huán)保性能):
(i)若在該樣本中,產(chǎn)品環(huán)保性能是優(yōu)等的概率為34%,求的值;
(ii)若,求在安全性能不合格的產(chǎn)品中,環(huán)保性能為優(yōu)等的件數(shù)比不合格的件數(shù)少的概率.
件數(shù) | 環(huán)保性能 | |||
優(yōu)等 | 合格 | 不合格 | ||
安全性能 | 優(yōu)等 | 6 | 20 | 5 |
合格 | 10 | 18 | 6 | |
不合格 | m | 4 | n |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com