如圖所示,在三棱錐PABC中,已知PC⊥平面ABC,點(diǎn)C在平面PBA內(nèi)的射影D在直線PB上.
(1)求證:AB⊥平面PBC;
(2)設(shè)AB=BC,直線PA與平面ABC所成的角為45°,求異面直線AP與BC所成的角;
(3)在(2)的條件下,求二面角C-PA-B的余弦值.
(1)由PC⊥平面ABC,得AB⊥PC.由點(diǎn)C在平面PBA內(nèi)的射影D在直線PB上,
得到CD⊥平面PAB.進(jìn)一步推出AB⊥平面PBC.
(2)異面直線AP與BC所成的角為60°.
(3)所求二面角的余弦值為.
【解析】
試題分析:(1)∵PC⊥平面ABC,AB?平面ABC,
∴AB⊥PC.∵點(diǎn)C在平面PBA內(nèi)的射影D在直線PB上,
∴CD⊥平面PAB.
又∵AB?平面PBA,∴AB⊥CD.
又∵CD∩PC=C,∴AB⊥平面PBC.
(2)∵PC⊥平面ABC,
∴∠PAC為直線PA與平面ABC所成的角.
于是∠PAC=45°,設(shè)AB=BC=1,則PC=AC=,以B為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則B(0,0,0),A(0,1,0),C(1,0,0),P(1,0,),
=(1,-1,),=(1,0,0),
∵cos〈,〉==,∴異面直線AP與BC所成的角為60°.
(3)取AC的中點(diǎn)E,連接BE,則=(,,0),
∵AB=BC,∴BE⊥AC.又∵平面PCA⊥平面ABC,
∴BE⊥平面PAC.∴是平面PAC的法向量.設(shè)平面PAB的法向量為n=(x,y,z),則由得取z=1,得
∴n=(-,0,1).
于是cos〈n,〉===-.
又∵二面角C-PA-B為銳角,∴所求二面角的余弦值為.
考點(diǎn):本題主要考查立體幾何中的垂直關(guān)系、角的計(jì)算。
點(diǎn)評(píng):典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計(jì)算。在計(jì)算問(wèn)題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟,利用空間向量,省去繁瑣的證明,也是解決立體幾何問(wèn)題的一個(gè)基本思路。注意運(yùn)用轉(zhuǎn)化與化歸思想,將空間問(wèn)題轉(zhuǎn)化成平面問(wèn)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
6 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
6 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com