【題目】總體由編號(hào)為01,02,…,19,20的20個(gè)個(gè)體組成,利用下面的隨機(jī)數(shù)表選取5個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表第1行的第9列和第10列數(shù)字開(kāi)始從左到右依次選取兩個(gè)數(shù)字,則選出來(lái)的第5個(gè)個(gè)體的編號(hào)為_______
7816 6572 0802 6314 0702 4369 9728 0198
3204 9234 4935 8200 3623 4869 6938 7481
【答案】01
【解析】
由隨機(jī)數(shù)表第1行的第9列和第10列數(shù)字開(kāi)始由左到右依次取數(shù),大于20的數(shù)字去掉,重復(fù)的去掉,則可得第五個(gè)數(shù)字.
由隨機(jī)數(shù)表第1行的第9列和第10列數(shù)字開(kāi)始由左到右依次取數(shù),第一個(gè)數(shù)為08;
第二個(gè)數(shù)為02;
63>20,第三個(gè)數(shù)為14;
第四個(gè)數(shù)為07;
02重復(fù)舍去,43>20,69>20,97>20,28>20,第五個(gè)數(shù)為01.
故答案為:01.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn),當(dāng)圓內(nèi)接多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近圓的面積,由此創(chuàng)立了割圓術(shù),利用割圓術(shù)劉徽得到了圓周率精確到小數(shù)點(diǎn)后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術(shù)設(shè)計(jì)的程序框圖,則輸出的n值為( ) 參考數(shù)據(jù): ,sin15°≈0.2588,sin7.5°≈0.1305.
A.12
B.24
C.48
D.96
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(﹣1,0),B(1,0)為雙曲線 ﹣ =1(a>0,b>0)的左右頂點(diǎn),點(diǎn)M在雙曲線上,△ABM為等腰三角形,且頂角為120°,則該雙曲線的標(biāo)準(zhǔn)方程為( )
A.x2﹣ =1
B.x2﹣ =1
C.x2﹣y2=1
D.x2﹣ =1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,30這30個(gè)整數(shù)中等可能隨機(jī)產(chǎn)生.
(1)分別求出(按程序框圖正確編程運(yùn)行時(shí))輸出y的值為i的概率Pi(i=1,2,3);
(2)甲、乙兩同學(xué)依據(jù)自己對(duì)程序框圖的理解,各自編寫程序重復(fù)運(yùn)行n次后,統(tǒng)計(jì)記錄了輸出y的值為i(i=1,2,3)的頻數(shù),下面是甲、乙所作頻數(shù)統(tǒng)計(jì)表的部分?jǐn)?shù)據(jù):
甲的頻數(shù)統(tǒng)計(jì)表(部分)
運(yùn)行次數(shù) | 輸出y=1 的頻數(shù) | 輸出y=2 的頻數(shù) | 輸出y=3 的頻數(shù) |
30 | 16 | 11 | 3 |
… | … | … | … |
2 000 | 967 | 783 | 250 |
乙的頻數(shù)統(tǒng)計(jì)表(部分)
運(yùn)行次數(shù) | 輸出y=1 的頻數(shù) | 輸出y=2 的頻數(shù) | 輸出y=3 的頻數(shù) |
30 | 13 | 13 | 4 |
… | … | … | … |
2 000 | 998 | 803 | 199 |
當(dāng)n=2 000時(shí),根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分?jǐn)?shù)表示),并判斷甲、乙中誰(shuí)所編寫的程序符合算法要求的可能性較大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方體ABCD﹣A1B1C1D1中,點(diǎn)M在棱BB1上,兩條直線MA,MC與平面ABCD所成角均為θ,AC與BD交于點(diǎn)O.
(1)求證:AC⊥OM;
(2)當(dāng)M為BB1的中點(diǎn),且θ= 時(shí),求二面角A﹣D1M﹣B1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某臺(tái)風(fēng)中心位于海港城市東偏北的150公里外,以每小時(shí)公里的速度向正西方向快速移動(dòng),2.5小時(shí)后到達(dá)距海港城市西偏北的200公里處,若,則風(fēng)速的值為_____公里/小時(shí)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正四面體ABCD中,M是棱AD的中點(diǎn),O是點(diǎn)A在底面BCD內(nèi)的射影,則異面直線BM與AO所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線: 與橢圓: 在第一象限的交點(diǎn)為, 為坐標(biāo)原點(diǎn), 為橢圓的右頂點(diǎn), 的面積為.
(Ⅰ)求拋物線的方程;
(Ⅱ)過(guò)點(diǎn)作直線交于、 兩點(diǎn),射線、分別交于、兩點(diǎn),記和的面積分別為和,問(wèn)是否存在直線,使得?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求滿足的的值;
(2)若函數(shù)是定義在R上的奇函數(shù),函數(shù)滿足,若對(duì)任意且≠0,不等式恒成立,求實(shí)數(shù)m的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com