【題目】已知拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)為F與橢圓C的一個(gè)焦點(diǎn)重合,且拋物線(xiàn)的準(zhǔn)線(xiàn)與橢圓C相交于點(diǎn)
(1)求拋物線(xiàn)的方程;
(2)過(guò)點(diǎn)F是否存在直線(xiàn)l與橢圓C交于M,N兩點(diǎn),且以MN為對(duì)角線(xiàn)的正方形的第三個(gè)頂點(diǎn)恰在y軸上?若存在,求出直線(xiàn)l的方程;若不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)解:由題意知, ,則p=2,

∴拋物線(xiàn)方程為y2=4x


(2)解:設(shè)橢圓方程為

,解得a2=2,b2=1.

∴橢圓C的方程為

若l垂直于x軸,得M(1,﹣ ),N(1, ), ,不符合;

若l不垂直于x軸,

設(shè)正方形第三個(gè)頂點(diǎn)坐標(biāo)為P(0,y0),M(x1,y1),N(x2,y2

令l:y=k(x﹣1)(k≠0),代入 ,得(1+2k2)x2﹣4k2x+2k2﹣2=0.

,

y1+y2=k(x1+x2)﹣2k= ,

則線(xiàn)段MN的中垂線(xiàn)方程為 ,

∴P(0, ).

,得x1x2+(y1﹣y0)(y2﹣y0)=0.

(y0≠0),∴

,∴ ,解得k=

∴直線(xiàn)l的方程為


【解析】(1)由已知求得p,則拋物線(xiàn)方程可求;(2)設(shè)出橢圓方程,由已知列關(guān)于a,b,c的方程組,求得a,b的值,得到橢圓方程,當(dāng)直線(xiàn)l的斜率不存在時(shí),不合題意;當(dāng)直線(xiàn)l的斜率存在時(shí),設(shè)正方形第三個(gè)頂點(diǎn)坐標(biāo)為P(0,y0),設(shè)出直線(xiàn)方程y=k(x﹣1)(k≠0),聯(lián)立直線(xiàn)方程和橢圓方程,利用根與系數(shù)的關(guān)系結(jié)合 求得k值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1. (Ⅰ)求角A的大。
(Ⅱ)若△ABC的面積S=5 ,b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn)E的中心為原點(diǎn),P(3,0)是E的焦點(diǎn),過(guò)P的直線(xiàn)l與E相交于A,B兩點(diǎn),且AB的中點(diǎn)為N(﹣12,﹣15),則E的方程式為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】要得到函數(shù) 的圖象,只需將函數(shù)y=cos2x的圖象(
A.向左平移 個(gè)單位
B.向右平移 個(gè)單位
C.向左平移 個(gè)單位
D.向右平移 個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了促進(jìn)學(xué)生的全面發(fā)展,鄭州市某中學(xué)重視學(xué)生社團(tuán)文化建設(shè),現(xiàn)用分層抽樣的方法從“話(huà)劇社”,“創(chuàng)客社”,“演講社”三個(gè)金牌社團(tuán)中抽取6人組成社團(tuán)管理小組,有關(guān)數(shù)據(jù)見(jiàn)表(單位:人):

社團(tuán)名稱(chēng)

成員人數(shù)

抽取人數(shù)

話(huà)劇社

50

a

創(chuàng)客社

150

b

演講社

100

c


(1)求a,b,c的值;
(2)若從“話(huà)劇社”,“創(chuàng)客社”,“演講社”已抽取的6人中任意抽取2人擔(dān)任管理小組組長(zhǎng),求這2人來(lái)自不同社團(tuán)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,F(xiàn)1、F2是雙曲線(xiàn) =1(a>0,b>0)的左、右焦點(diǎn),過(guò)F1的直線(xiàn)l與雙曲線(xiàn)的左右兩支分別交于點(diǎn)A、B.若△ABF2為等邊三角形,則雙曲線(xiàn)的離心率為(
A.4
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求證:PC⊥BC;
(2)求點(diǎn)A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A={x|x2+2x﹣3<0},集合B={x||x+a|<1}.
(1)若a=3,求A∪B;
(2)設(shè)命題p:x∈A,命題q:x∈B,若p是q成立的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)m,n∈R,若直線(xiàn)l:mx+ny﹣1=0與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B,且l與圓x2+y2=4相交所得弦的長(zhǎng)為2,O為坐標(biāo)原點(diǎn),則△AOB面積的最小值為

查看答案和解析>>

同步練習(xí)冊(cè)答案