(理)已知f(x),g(x)都是定義在R上的函數(shù),g(x)0,若f′(x)g(x)<f(x)g′(x),且f(x)=axg(x),,令數(shù)列{}(n=1,2,3,…)的前n項(xiàng)和為Sn,則=(    )

A.1                    B.1或             C.1或          D.

答案:D  (理)∵ax=,

∴(ax)′=<0,

∴0<a<1,又a+a-1=,

即3a2-10a+3=0,解得a=或a=3(不合).

,則,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知f(x)=x+
m
x
(m∈R)
,
(1)若m≤2,求函數(shù)g(x)=f(x)-lnx在區(qū)間[
1
2
,2]
上的最小值;
(2)若函數(shù)y=log
1
2
[f(x)+2]
在區(qū)間[1,+∞]上是減函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•閔行區(qū)二模)(理)已知f(x)=
.
2cos2x-10
m+
3
sin2x
10
311
.
的最大值為2,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年西城區(qū)抽樣理)(14分)

 已知f (x)、g(x)都是定義在R上的函數(shù),如果存在實(shí)數(shù)mn使得h (x) = m f(x)+ng(x),那么稱h (x)為f (x)、g(x)在R上生成的一個(gè)函數(shù).

設(shè)f (x)=x2+axg(x)=x+b(R),l(x)= 2x2+3x-1,h (x)為f (x)、g(x)在R上生成的一個(gè)二次函數(shù).

(Ⅰ)設(shè),若h (x)為偶函數(shù),求

(Ⅱ)設(shè),若h (x)同時(shí)也是g(x)、l(x) 在R上生成的一個(gè)函數(shù),求a+b的最小值;

(Ⅲ)試判斷h(x)能否為任意的一個(gè)二次函數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年周至二中四模理) 已知f(x)=sin(x+),  g(x)=cos(x)  ,則f(x)的圖象

A.與g(x)的圖象相同                                      B.與g(x)的圖象關(guān)于y軸對(duì)稱

C.向左平移個(gè)單位,得到g(x)的圖象         D.向右平移個(gè)單位,得到g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(04年福建卷理)(14分)

已知f(x)=(x∈R)在區(qū)間[-1,1]上是增函數(shù)。

(Ⅰ)求實(shí)數(shù)a的值組成的集合A;

(Ⅱ)設(shè)關(guān)于x的方程f(x)=的兩個(gè)非零實(shí)根為x1、x2.試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案