【題目】(1) 若函數(shù)f(x)=|4x-x2|+a有4個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍;

(2) 已知函數(shù)f(x)=x2+2mx+3m+4.

① 若函數(shù)f(x)有且僅有一個(gè)零點(diǎn),求實(shí)數(shù)m的值;

若函數(shù)f(x)有兩個(gè)零點(diǎn)且兩個(gè)零點(diǎn)均比-1大,求實(shí)數(shù)m的取值范圍.

【答案】(1)(-4,0).(2)(-5,-1).

【解析】試題分析:(1)利用函數(shù)圖像研究函數(shù)零點(diǎn):先作出函數(shù)g(x)=|4x-x2|圖像,再研究直線y=-a與它有四個(gè)交點(diǎn)的條件,即得實(shí)數(shù)a的取值范圍;(2)①由二次函數(shù)得Δ=0,解得實(shí)數(shù)m的值;②由實(shí)根分布充要條件得 ,解不等式組可得實(shí)數(shù)m的取值范圍.

試題解析:解: (1) 令f(x)=0,得|4x-x2|+a=0,

即|4x-x2|=-a.

令g(x)=|4x-x2|,h(x)=-a.作出g(x),h(x)的圖象.

由圖象可知,當(dāng)0<-a<4,即-4<a<0時(shí),g(x)與h(x)的圖象有4個(gè)交點(diǎn),即f(x)有4個(gè)零點(diǎn).故a的取值范圍是(-4,0).

(2) ① f(x)=x2+2mx+3m+4有且僅有一個(gè)零點(diǎn)f(x)=0有兩個(gè)相等實(shí)根Δ=0,即4m2-4(3m+4)=0,即m2-3m-4=0,

∴ m=4或m=-1.

② 由題意,知

∴ -5<m<-1.

∴ m的取值范圍是(-5,-1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,且橢圓上一點(diǎn)到其兩焦點(diǎn),的距離之和為

1求橢圓的標(biāo)準(zhǔn)方程;

2設(shè)直線與橢圓交于不同兩點(diǎn),,若點(diǎn)滿足,的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面為平行四邊形,PD⊥平面ABCD,M為PC中點(diǎn).

(1)求證:AP∥平面MBD;

(2)若AD⊥PB,求證:BD⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,已知曲線為參數(shù)),在以為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,曲線,曲線.

(1)求曲線的交點(diǎn)的直角坐標(biāo);

(2)設(shè)點(diǎn), 分別為曲線上的動(dòng)點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)h(x)=(m2-5m+1)xm+1為冪函數(shù),且為奇函數(shù).

(I)求m的值;

(II)求函數(shù)g(x)=h(x)+,x的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù)).

1)求的解析式及單調(diào)遞減區(qū)間;

2)是否存在常數(shù),使得對(duì)于定義域內(nèi)的任意, 恒成立,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)若函數(shù)的兩個(gè)極值點(diǎn)為,求函數(shù)的解析式;

(2)在(1)的條件下,求函數(shù)的圖象過(guò)點(diǎn)的切線方程;

(3)對(duì)一切恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線經(jīng)過(guò)點(diǎn)A,求:

1直線在兩坐標(biāo)軸上的截距相等的直線方程;

2直線與兩坐標(biāo)軸的正半軸圍成三角形面積最小時(shí)的直線方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形ABCD為正方形, 為直角三角形, ,且.

1)證明:平面平面;

2)若AB=2AE,求異面直線BEAC所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案