某省環(huán)保研究所對(duì)市中心每天環(huán)境放射性污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)與時(shí)刻(時(shí)) 的關(guān)系為,其中是與氣象有關(guān)的參數(shù),且
(1)令, ,寫(xiě)出該函數(shù)的單調(diào)區(qū)間,并選擇其中一種情形進(jìn)行證明;
(2)若用每天的最大值作為當(dāng)天的綜合放射性污染指數(shù),并記作,求;
(3)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過(guò)2,試問(wèn)目前市中心的綜合放射性污染指數(shù)是否超標(biāo)?
(1)單調(diào)遞增區(qū)間為 ;單調(diào)遞減區(qū)間為。 
(2)
(3)當(dāng)時(shí)不超標(biāo),當(dāng)時(shí)超標(biāo)
第一問(wèn)利用定義法求證單調(diào)性,并判定結(jié)論。
第二問(wèn)(2)由函數(shù)的單調(diào)性知
,即t的取值范圍是. 
當(dāng)時(shí),記
 
上單調(diào)遞減,在上單調(diào)遞增,
第三問(wèn)因?yàn)楫?dāng)且僅當(dāng)時(shí),.
故當(dāng)時(shí)不超標(biāo),當(dāng)時(shí)超標(biāo).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題14分)已知函數(shù),
(Ⅰ) 設(shè)函數(shù)f(x)的圖象與x軸交點(diǎn)為A, 曲線(xiàn)y=f(x)在A點(diǎn)處的切線(xiàn)方程是, 求的值;
(Ⅱ) 若函數(shù), 求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù),若,則           

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一個(gè)工廠(chǎng)生產(chǎn)某種產(chǎn)品每年需要固定投資100萬(wàn)元,此外每生產(chǎn)1件該產(chǎn)品還需要增加投資1萬(wàn)元,年產(chǎn)量為)件.當(dāng)時(shí),年銷(xiāo)售總收入為()萬(wàn)元;當(dāng)時(shí),年銷(xiāo)售總收入為260萬(wàn)元.記該工廠(chǎng)生產(chǎn)并銷(xiāo)售這種產(chǎn)品所得的年利潤(rùn)為萬(wàn)元,則(萬(wàn)元)與(件)的函數(shù)關(guān)系式為         ,該工廠(chǎng)的年產(chǎn)量為      件時(shí),所得年利潤(rùn)最大.(年利潤(rùn)=年銷(xiāo)售總收入年總投資)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)的圖象是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)是函數(shù)的極值點(diǎn),其中
是自然對(duì)數(shù)的底數(shù).
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)直線(xiàn)同時(shí)滿(mǎn)足:
是函數(shù)的圖象在點(diǎn)處的切線(xiàn),
與函數(shù)的圖象相切于點(diǎn)
求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知為定義在R上的偶函數(shù),在時(shí)恒成立,且,則不等式的解集為      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知設(shè)是集合P到集合Q的映射,如果Q=( )。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x),g(x)分別由右表給出,則,的值為
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案