(2012•重慶)已知a=log23+log2
3
,b=log29-log2
3
,c=log32則a,b,c的大小關(guān)系是( 。
分析:利用對數(shù)的運算性質(zhì)可求得a=log23
3
,b=log23
3
>1,而0<c=log32<1,從而可得答案.
解答:解:∵a=log23+log2
3
=log23
3
,b=log29-log2
3
=log2
9
3
=log23
3
>1,
∴a=b>1,又0<c=log32<1,
∴a=b>c.
故選B.
點評:本題考查不等式比較大小,掌握對數(shù)的運算性質(zhì)既對數(shù)函數(shù)的性質(zhì)是解決問題之關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•重慶)已知{an}為等差數(shù)列,且a1+a3=8,a2+a4=12.
(Ⅰ)求{an}的通項公式
(Ⅱ)記{an}的前n項和為Sn,若a1,ak,Sk+2成等比數(shù)列,求正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•重慶)已知函數(shù)f(x)=ax3+bx+c在點x=2處取得極值c-16.
(Ⅰ)求a,b的值;
(Ⅱ)若f(x)有極大值28,求f(x)在[-3,3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•重慶)已知f(x)是定義在R上的偶函數(shù),且以2為周期,則“f(x)為[0,1]上的增函數(shù)”是“f(x)為[3,4]上的減函數(shù)”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 [2012·重慶卷] 已知在直三棱柱ABCA1B1C1中,AB=4,ACBC=3,DAB的中點.

(1)求異面直線CC1AB的距離;

(2)若AB1A1C,求二面角A1CDB1的平面角的余弦值.

圖1-3

查看答案和解析>>

同步練習(xí)冊答案