,構(gòu)造一個數(shù)列發(fā)生器,其工作原理如下:

輸入數(shù)據(jù),經(jīng)數(shù)列發(fā)生器輸出,若,則數(shù)列發(fā)生器結(jié)束工作,

,則將反饋回輸入端,再輸出并依此規(guī)律繼續(xù)下去,若輸入時,產(chǎn)生的無窮數(shù)列滿足,對任意正整數(shù)均有,求范圍


解析:

要使,則

對于函數(shù),若,則,

,則,依此類推,可得數(shù)列滿足

此時,綜上所述,取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)對任何函數(shù)f(x),x∈D,可按圖示構(gòu)造一個數(shù)列發(fā)生器,其工作原理如下:①輸入數(shù)據(jù)x0∈D,經(jīng)數(shù)列發(fā)生器輸出x1=f(x0);②若x1∉D,則數(shù)列發(fā)生器結(jié)束工作;若x1∈D,則將x1反饋回輸入端,再輸出x2=f(x1),并依此規(guī)律繼續(xù)下去.現(xiàn)定義f(x)=
4x-2
x+1

(Ⅰ)若輸入x0=
49
65
,則由數(shù)列發(fā)生器產(chǎn)生數(shù)列{xn},請寫出數(shù)列{xn}的所有項;
(Ⅱ)若要數(shù)列發(fā)生器產(chǎn)生一個無窮的常數(shù)列,試求輸入的初始數(shù)據(jù)x0的值;
(Ⅲ)若輸入x0時,產(chǎn)生的無窮數(shù)列{xn}滿足:對任意正整數(shù)n,均有xn<xn+1,求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于任意函數(shù)f(x),x∈D,可按如圖所示構(gòu)造一個數(shù)列發(fā)生器,其工作原理如下:
①輸入數(shù)據(jù)x0∈D,經(jīng)過數(shù)列發(fā)生器輸出x1=f(x0);
②若x1∉D,則數(shù)列發(fā)生器結(jié)束工作;若x1∈D,則將x1反饋回輸入端,再輸出x2=f(x1),依此類推.
若f(x)=x+
x
+
1
4
,D=(0,+∞).若輸入x0=1,則打印輸出的數(shù)據(jù)x20=
121
121

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意函數(shù)f(x),x∈D,可按圖構(gòu)造一個數(shù)列發(fā)生器.記由數(shù)列發(fā)生器產(chǎn)生數(shù)列{xn}.
(Ⅰ)若定義函數(shù)f(x)=
4x-2
x+1
,且輸入x0=
49
65
,請寫出數(shù)列{xn}的所有項;
(Ⅱ)若定義函數(shù)f(x)=2x+3,且輸入x0=-1,求數(shù)列{xn}的通項公式xn
(Ⅲ)若定義函數(shù)f(x)=xsinx(0≤x≤2π),且要產(chǎn)生一個無窮的常數(shù)列{xn},試求輸入的初始數(shù)據(jù)x0的值及相應(yīng)數(shù)列{xn}的通項公式xn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意函數(shù)f(x),x∈D,可按如圖構(gòu)造一個數(shù)列發(fā)生器,記由數(shù)列發(fā)生器產(chǎn)生數(shù)列{xn}.
(1)若定義函數(shù)f(x)=
4x-2
x+1
,且輸入x0=
49
65
,請寫出數(shù)列{xn}的所有項;
(2)若定義函數(shù)f(x)=xsinx(0≤x≤2π),且要產(chǎn)生一個無窮的常數(shù)列{xn},試求輸入的初始數(shù)據(jù)x0的值及相應(yīng)數(shù)列{xn}的通項公式xn;
(3)若定義函數(shù)f(x)=2x+3,且輸入x0=-1,求數(shù)列{xn}的通項公式xn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)定義在集合A上的函數(shù)y=f(x),構(gòu)造一個數(shù)列發(fā)生器,其工作原理如下:①輸入數(shù)據(jù)x0∈A,計算出x1=f(x0);②若x1∉A,則數(shù)列發(fā)生器結(jié)束工作;若x1∈A,則輸出x1,并將x1反饋回輸入端,再計算出x2=f(x1),并依此規(guī)律繼續(xù)下去.若集合A={x|0<x<1}},f(x)=
mx
m+1-x
(m∈N*).
(理)(1)求證:對任意x0∈A,此數(shù)列發(fā)生器都可以產(chǎn)生一個無窮數(shù)列{xn};
(2)若x0=
1
2
,記an=
1
xn
(n∈N*),求數(shù)列{an}的通項公式;
(3)在(2)的條件下,證明:3≤am<4(n∈N*).
(文)(1)求證:對任意x0∈A,此數(shù)列發(fā)生器都可以產(chǎn)生一個無窮數(shù)列{xn};
(2)若m=1,求證:數(shù)列{xn}單調(diào)遞減;
(3)若x0=
1
2
,記an=
1
xn
(n∈N*),求數(shù)列{an}的通項公式.

查看答案和解析>>

同步練習(xí)冊答案