設橢圓的左、右焦點分別為,
上頂點為,在軸負半軸上有一點,滿足,且

(Ⅰ)求橢圓的離心率;
(Ⅱ)是過三點的圓上的點,到直線的最大距離等于橢圓長軸的長,求橢圓的方程;
(Ⅲ)在(Ⅱ)的條件下,過右焦點作斜率為的直線與橢圓交于兩點,線段的中垂線與軸相交于點,求實數(shù)的取值范圍.

(Ⅰ)(Ⅱ)(Ⅲ)

解析試題分析:解:(Ⅰ)連接,因為,,所以,
,故橢圓的離心率
(Ⅱ)由(1)知于是, ,
的外接圓圓心為),半徑
到直線的最大距離等于,所以圓心到直線的距離為
所以,得  ,橢圓方程為
(Ⅲ)由(Ⅱ)知,
   代入消 
因為過點,所以恒成立
,,
中點                        
時,為長軸,中點為原點,則      
中垂線方程
,              
,, 可得          
綜上可知實數(shù)的取值范圍是.              
考點:橢圓的方程;橢圓的性質;
點評:關于曲線的大題,難度相對都較大。對于題目涉及到關于直線和其他曲線的交點時,一般都可以用到跟與系數(shù)的關系式:在一元二次方程中,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知拋物線的焦點在拋物線上.

(1)求拋物線的方程及其準線方程;
(2)過拋物線上的動點作拋物線的兩條切線, 切點為、.若、的斜率乘積為,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:的離心率為,右焦點到直線 的距離為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線 與橢圓C交于A、B兩點,且線段AB中點恰好在直線上,求△OAB的面積S的最大值.(其中O為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

橢圓C以拋物線的焦點為右焦點,且經(jīng)過點A(2,3).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若分別為橢圓的左右焦點,求的角平分線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,橢圓的頂點為,焦點為.

(Ⅰ)求橢圓C的方程;
(Ⅱ)設n 為過原點的直線,是與n垂直相交于P點,與橢圓相交于A, B兩點的直線,.是否存在上述直線使成立?若存在,求出直線的方程;并說出;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在橢圓上找一點,使這一點到直線的距離為最小,并求最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的焦點與橢圓的右焦點重合.(Ⅰ)求拋物線的方程;
(Ⅱ)動直線恒過點與拋物線交于A、B兩點,與軸交于C點,請你觀察并判斷:在線段MA,MB,MCAB中,哪三條線段的長總能構成等比數(shù)列?說明你的結論并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系xOy中,以坐標原點O為極點x軸的正半軸為極軸建立極坐標系, 曲線C1的極坐標方程為:
(1)求曲線C1的普通方程
(2)曲線C2的方程為,設P、Q分別為曲線C1與曲線C2上的任意一點,求|PQ|的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,直角坐標系中,一直角三角形,,B、D在軸上且關于原點對稱,在邊上,BD=3DC,△ABC的周長為12.若一雙曲線以B、C為焦點,且經(jīng)過A、D兩點.

⑴ 求雙曲線的方程;
⑵ 若一過點為非零常數(shù))的直線與雙曲線相交于不同于雙曲線頂點的兩點、,且,問在軸上是否存在定點,使?若存在,求出所有這樣定點的坐標;若不存在,請說明理由

查看答案和解析>>

同步練習冊答案