精英家教網 > 高中數學 > 題目詳情

若數列{an}滿足a1=2,an+1an=an-1,則a2013的值為


  1. A.
    2
  2. B.
    數學公式
  3. C.
    -1
  4. D.
    1
C
分析:根據數列遞推式,求得數列是以3為周期的周期數列,即可求得結論.
解答:∵a1=2,an+1an=an-1,∴a2=,∴a3=-1,∴a4=2,
∴數列是以3為周期的周期數列
∴a2013=a3×671=a3=-1,
故選C.
點評:本題考查數列遞推式,考查學生的計算能力,確定數列是以3為周期的周期數列是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

下列關于數列的命題中,正確的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•煙臺二模)若數列{an}滿足an+12-
a
2
n
=d
(d為正常數,n∈N+),則稱{an}為“等方差數列”.甲:數列{an}為等方差數列;乙:數列{an}為等差數列,則甲是乙的(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•三明模擬)若數列{an}滿足a≤an≤b,其中a、b是常數,則稱數列{an}為有界數列,a是數列{an}的下界,b是數列{an}的上界.現要在區(qū)間[-1,2)中取出20個數構成有界數列{bn},并使數列{bn}有且僅有兩項差的絕對值小于
1
m
,那么正數m的最小取值是(  )

查看答案和解析>>

科目:高中數學 來源:2013年福建省三明市高三質量檢查數學試卷(解析版) 題型:選擇題

若數列{an}滿足a≤an≤b,其中a、b是常數,則稱數列{an}為有界數列,a是數列{an}的下界,b是數列{an}的上界.現要在區(qū)間[-1,2)中取出20個數構成有界數列{bn},并使數列{bn}有且僅有兩項差的絕對值小于,那么正數m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

科目:高中數學 來源:2012年福建省三明市普通高中畢業(yè)班質量檢查數學試卷(理科)(解析版) 題型:選擇題

若數列{an}滿足a≤an≤b,其中a、b是常數,則稱數列{an}為有界數列,a是數列{an}的下界,b是數列{an}的上界.現要在區(qū)間[-1,2)中取出20個數構成有界數列{bn},并使數列{bn}有且僅有兩項差的絕對值小于,那么正數m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

同步練習冊答案