【題目】在平面直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=2(cos θ+sin θ).
(1)求C的直角坐標(biāo)方程;
(2)直線l: (t為參數(shù))與曲線C交于A,B兩點(diǎn),與y軸交于點(diǎn)E,求|EA|+|EB|.
【答案】(1)(x-1)2+(y-1)2=2;(2).
【解析】試題分析:(1)根據(jù)極坐標(biāo)和直角坐標(biāo)互化的公式得到直角坐標(biāo);(2)將直線參數(shù)方程和曲線聯(lián)立得到二次方程,因?yàn)閨EA|+|EB|=|t1|+|t2|=|t1-t2|,由弦長(zhǎng)公式得到結(jié)果.
解析:
(1)由ρ=2(cos θ+sin θ)得ρ2=2ρ(cos θ+sin θ),
所以曲線C的直角坐標(biāo)方程為x2+y2=2x+2y,
即(x-1)2+(y-1)2=2.
(2)將l的參數(shù)方程代入曲線C的直角坐標(biāo)方程,
化簡(jiǎn)得t2-t-1=0,
點(diǎn)E對(duì)應(yīng)的參數(shù)t=0,
設(shè)點(diǎn)A,B對(duì)應(yīng)的參數(shù)分別為t1,t2,
則t1+t2=1,t1t2=-1,
所以|EA|+|EB|=|t1|+|t2|=|t1-t2|
==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知2(tanA+tanB)= .
(1)證明:a+b=2c;
(2)求cosC的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(2-a)x-2(1+ln x)+a,若函數(shù)f(x)在區(qū)間上無(wú)零點(diǎn),求實(shí)數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)市場(chǎng)調(diào)查發(fā)現(xiàn),某種產(chǎn)品在投放市場(chǎng)的30天中,其銷(xiāo)售價(jià)格(元)和時(shí)間(天)的關(guān)系如圖所示.
(1)求銷(xiāo)售價(jià)格(元)和時(shí)間(天)的函數(shù)關(guān)系式;
(2)若日銷(xiāo)售量(件)與時(shí)間(天)的函數(shù)關(guān)系式是 ,問(wèn)該產(chǎn)品投放市場(chǎng)第幾天時(shí),日銷(xiāo)售額(元)最高,且最高為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=,若函數(shù)y=f(f(x))-a 恰有5個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx+φ)+1()的最小正周期為π,且.
(1)求ω和φ的值;
(2)函數(shù)f(x)的圖象縱坐標(biāo)不變的情況下向右平移個(gè)單位,得到函數(shù)g(x)的圖象,
①求函數(shù)g(x)的單調(diào)增區(qū)間;
②求函數(shù)g(x)在的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的部分圖像如圖所示,為最高點(diǎn),該圖像與軸交于點(diǎn)與軸交于點(diǎn),且的面積為.
(1)求函數(shù)的解析式;
(2)將函數(shù)的圖像向右平移個(gè)單位,再將所得圖像上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的倍,縱坐標(biāo)不變,得到函數(shù)的圖像,求在上的單調(diào)遞增區(qū)間。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2,AA1=,BB1=2,點(diǎn)E和F分別為BC和A1C的中點(diǎn).
(1)求證:EF∥平面A1B1BA;
(2)求直線A1B1與平面BCB1所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).若曲線在點(diǎn)處的切線方程為
(為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com