設(shè)分別是橢圓的左、右焦點(diǎn).若是該橢圓上的一個(gè)動點(diǎn),求·的最大值和最小值;

最大值,最小值


解析:

(Ⅰ)解法一:易知,所以

,設(shè),則 

因?yàn)?img width=69 height=27 src="http://thumb.zyjl.cn/pic1/1899/sx/66/107266.gif">,故當(dāng),即點(diǎn)為橢圓短軸端點(diǎn)時(shí),有最小值 

當(dāng),即點(diǎn)為橢圓長軸端點(diǎn)時(shí),有最大值 

解法二:易知,所以

設(shè),則

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)、分別是橢圓的左、右焦點(diǎn).

(1)若是該橢圓上的一個(gè)動點(diǎn),求·的最大值和最小值;

(2)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,且∠為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)、分別是橢圓的左、右焦點(diǎn).

(1)若是該橢圓上的一個(gè)動點(diǎn),求·的最大值和最小值;

(2)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且∠為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年甘肅省高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

(本題滿分12分)設(shè)分別是橢圓的左、右焦點(diǎn).

(1)若是該橢圓上的一個(gè)動點(diǎn),求的最大值和最小值;

(2)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,且∠為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河北省高二第二學(xué)期期末數(shù)學(xué)(理)試題 題型:解答題

(本小題滿分12分)[來源:學(xué).科.網(wǎng)Z.X.X.K]

設(shè)分別是橢圓的左、右焦點(diǎn).

(1)若是該橢圓上的一個(gè)動點(diǎn),求的取值范圍;

(2)設(shè)過定點(diǎn)Q(0,2)的直線與橢圓交于不同的兩點(diǎn)M、N,且∠為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.

(3)設(shè)是它的兩個(gè)頂點(diǎn),直線AB相交于點(diǎn)D,與橢圓相交于E、F兩點(diǎn).求四邊形面積的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(本題滿分14分)設(shè)、分別是橢圓的左、右焦點(diǎn),過且斜率為的直線相交于、兩點(diǎn),且、成等差數(shù)列.

(1)若,求的值;

(2)若,設(shè)點(diǎn)滿足,求橢圓的方程.

 

查看答案和解析>>

同步練習(xí)冊答案