15.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,ABCD為正方形,則該四棱錐中互相垂直的平面有6組.

分析 利用平面與平面垂直的判定定理,即可得出結(jié)論.

解答 解:∵四棱錐P-ABCD中,PA⊥平面ABCD,ABCD為正方形,
∴平面ABCD⊥平面PAB,平面ABCD⊥平面PAC,平面ABCD⊥平面PAD,平面PAB⊥平面PAD,平面PAB⊥平面PBC,平面PAD⊥平面PDC.共6對.
故答案為:6.

點(diǎn)評 本題考查平面與平面垂直的判定定理,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知sin20°=a,則sin50°等于( 。
A.1-2a2B.1+2a2C.1-a2D.a2-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.對任意實(shí)數(shù)x,x2-4bx+3b>0恒成立,則b的取值范圍是0<b<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知不等式x2-5ax+b>0的解集為{x|x>4或x<1}.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)在(Ⅰ)的情況下,若函數(shù)f(x)=ax+$\frac{bx+4}{2(x-1)}$(x>1),求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.用適當(dāng)?shù)男问奖硎鞠铝屑希?br />(1)由不等式x-3>2的所有解組成的集合是{x|x>5};
(2)由所有小于4的非負(fù)奇數(shù)所組成的集合是{1,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.證明:
(1)$\frac{x}{x+1}$≤ln(x+1)≤x;
(2)ex≥x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.圓心是(0,2),半徑是$\sqrt{3}$,則此圓的方程是x2+(y-2)2=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)a,b∈R+,求證:$\frac{a}{1+a}$+$\frac{1+b}$>$\frac{a+b}{1+a+b}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知曲線y=$\frac{1}{{e}^{x}+1}$,則曲線的切線中斜率最小的直線與兩坐標(biāo)軸所圍成的三角形的面積為$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案