如圖,在梯形ABCD中,AB//CD,AD=DC=CB=a,,四邊形ACFE是矩形,且平面平面ABCD,點(diǎn)M在線段EF上.
(1)求證:平面ACFE;
(2)當(dāng)EM為何值時(shí),AM//平面BDF?證明你的結(jié)論.
(1)見解析;(2)當(dāng)時(shí),平面.

試題分析:(1)由已知可得四邊形是等腰梯形,
,,得到.
再根據(jù)平面平面,交線為,即得證.
(2)在梯形中,設(shè),連接,則,       
再根據(jù),而,得到
確定得到四邊形是平行四邊形,從而,得證.
(1)在梯形中,, 四邊形是等腰梯形,
,

.                               3分
平面平面,交線為,
平面 .                       6分

(2)當(dāng)時(shí),平面,                           7分
在梯形中,設(shè),連接,則,       
,而,,            9分
,四邊形是平行四邊形,,           
平面,平面平面.         12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,平面ABCD,AD//BC,BC=2AD,AC,Q是線段PB的中點(diǎn).

(1)求證:平面PAC;
(2)求證:AQ//平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直四棱柱中,,,,E為CD上一點(diǎn),,

(1)證明:BE⊥平面;
(2)求點(diǎn)到平面的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD是菱形,四邊形MADN是矩形,平面MADN平面ABCD,E,F(xiàn)分別為MA,DC的中點(diǎn),求證:

(1)EF//平面MNCB;
(2)平面MAC平面BND.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將圖(1)中的等腰直角三角形ABC沿斜邊BC的中線折起得到空間四面體ABCD(如圖(2)),則在空間四面體ABCD中,AD與BC的位置關(guān)系是(  )
A.相交且垂直B.相交但不垂直
C.異面且垂直D.異面但不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知在四面體ABCD中,E、F分別是AC、BD的中點(diǎn),若CD=2AB=4,EFAB,則EF與CD所成的角為(  。

A.        B.      C.        D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,在四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構(gòu)成三棱錐A—BCD,則在三棱錐A—BCD中,下列命題正確的是(  )
A.平面ABD⊥平面ABC
B.平面ADC⊥平面BDC
C.平面ABC⊥平面BDC
D.平面ADC⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正方形ACDE與等腰直角三角形ACB所在的平面互相垂直,且AC=BC=2,∠ACB=90°,F,G分別是線段AE,BC的中點(diǎn),則AD與GF所成的角的余弦值為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)表示直線,表示不同的平面,則下列命題中正確的是
A.若,則B.若,則
C.若,則D.若,則

查看答案和解析>>

同步練習(xí)冊(cè)答案