過點(0,2)與拋物線y2=8x只有一個公共點的直線有( 。
A.無數(shù)多條B.3條C.2條D.1條
拋物線y2=8x的焦點為(2,0),當過點(0,2)的直線的斜率不存在時,直線的方程為 x=0,即直線為y軸時,
與拋物線y2=8x只有一個公共點.
當過點(0,2)的直線的斜率等于0時,直線的方程為 y=2,與拋物線y2=8x只有一個公共點.
當過點(0,2)的直線斜率存在且不為零時,設為k,那么直線方程為:y-2=kx,即:y=kx+2,代入拋物線方程
可得  k2x2+(4k-8)x+4=0,由判別式等于0 可得:64-64k=0,∴k=1,此時,直線的方程為
y=kx+2.
綜上,滿足條件的直線共有3條,
故選B.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在直角坐標平面上有一點列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,對一切正整數(shù)n,點Pn在函數(shù)y=3x+
13
4
的圖象上,且Pn的橫坐標構成以-
5
2
為首項,-1為公差的等差數(shù)列{xn}.
(1)求點Pn的坐標;
(2)設拋物線列C1,C2,C3,…,Cn,…中的每一條的對稱軸都垂直于x軸,拋物線Cn的頂點為Pn,且過點Dn(0,n2+1).記與拋物線Cn相切于點Dn的直線的斜率為kn,求
1
k1k2
+
1
k2k3
+…+
1
kn-1kn
;
(3)設S={x|x=2xn,n∈N*},T={y|y=4yn,n∈N*},等差數(shù)列{an}的任一項an∈S∩T,其中a1是S∩T中的最大數(shù),-265<a10<-125,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:廣東省珠海市2011-2012學年高二下學期期末考試數(shù)學文科試題 題型:044

在直角坐標平面上有一點列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,對每個正整數(shù)n,點Pn位于函數(shù)的圖象上,且Pn的橫坐標構成以為首項,-1為公差的等差數(shù)列{xn}.

(1)求點Pn的坐標;

(2)設拋物線列C1,C2,C3,…,Cn,…中的每一條的對稱軸都垂直于x軸,第n條拋物線Cn的頂點為Pn且過點Dn(0,n2+1),記過點Dn且與拋物線Cn相切的直線的斜率為kn,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:2007年海中附校高三數(shù)學綜合模擬測試一 題型:044

在直角坐標平面上有一點列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…對每個正整數(shù)n,點Pn位于函數(shù)的圖象上,且Pn的橫坐標構成以為首項,-1為公差的等差數(shù)列{xn}.

(1)求點Pn的坐標;

(2)設拋物線列C1,C2,C3,…,Cn,…中的每一條的對稱軸都垂直于x軸,第n條拋物線Cn的頂點為Pn且過點Dn(0,n2+1),記過點Dn且與拋物線Cn只有一個交點的直線的斜率為kn,求證:

(3)設,,等差數(shù)列{an}的任一項an∈S∩T,其中a1是S∩T中的最大數(shù),-265<a10<-125,求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:2007屆宜昌市一中高三數(shù)學(理)期末考試模擬試題-舊人教 題型:044

在直角坐標平面上有一點列P1,(x1,y2),P2(x2,y2)…Pn(xn,yn)對一切正整數(shù)n,點Pn位于函數(shù)的圖象上,且Pn的橫坐標構成以為首項,-1為公差的等差數(shù)列{xn}.

(1)求點Pn的坐標;

(2)設拋物線列c1,c2,c3,…,cn,…中的每一條的對稱軸都垂直于x軸,第n條拋物線cn的頂點為Pn,且過點Dn(0,n2+1),記與拋物線cn相切于Dn的直線的斜率為kn,求:

(3)設S={x|x=2xn,n∈N,n≥1},T={y|y=4y,n≥1},等差數(shù)列{an}的任一項an∈S∩T,其中a1是S∩T中的最大數(shù),-265<a10<-125,求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

AnBn分別表示數(shù)列{an}和{bn}的前n項和,對任何正整數(shù)n,an=-,4Bn-12An=13n.

(1)求數(shù)列{bn}的通項公式;

(2)設有拋物線列C1,C2,…,Cn,…,拋物線Cn(nN*)的對稱軸平行于y軸,頂點為(an,bn),且通過點Dn(0,n2+1),過點Dn且與拋物線Cn相切的直線的斜率為kn,求極限.

(3)設集合X={x|x=2an,nN*},Y={y|y=4bn,nN*},若等差數(shù)列{Cn}的任一項Cn∈X∩Y,C1是X∩Y中的最大數(shù),且-265<C10<-125,求{Cn}的通項公式.

查看答案和解析>>

同步練習冊答案