【題目】對(duì)于定義在區(qū)間上的兩個(gè)函數(shù),如果對(duì)任意的,均有不等式成立,則稱函數(shù)上是友好的,否則稱為不友好的.

1)若,,則在區(qū)間上是否友好;

2)現(xiàn)在有兩個(gè)函數(shù),給定區(qū)間

①若在區(qū)間上都有意義,求的取值范圍;

②討論函數(shù)與在區(qū)間上是否友好

【答案】1)是;(2)①;②見解析

【解析】

1)按照定義,只需判斷在區(qū)間上是否恒成立;

2)①由題意解不等式組即可;②假設(shè)存在實(shí)數(shù),使得與在區(qū)間上是“友好”的,即,即,只需求出函數(shù)在區(qū)間上的最值,解不等式組即可.

1)由已知,,因?yàn)?/span>時(shí),

,所以恒成立,故

在區(qū)間上是“友好”的.

2)①在區(qū)間上都有意義,

則必須滿足,解得,又,

所以的取值范圍為.

②假設(shè)存在實(shí)數(shù),使得與在區(qū)間上是“友好”的,

,即,

因?yàn)?/span>,則,所以的右側(cè),

又復(fù)合函數(shù)的單調(diào)性可得在區(qū)間上為減函數(shù),

從而,

所以,解得,

所以當(dāng)時(shí),與在區(qū)間上是“友好”的;

當(dāng)時(shí),與在區(qū)間上是“不友好”的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)對(duì)12歲兒童瞬時(shí)記憶能力進(jìn)行調(diào)查,瞬時(shí)記憶能力包括聽覺記憶能力與視覺記憶能力。某班學(xué)生共有40人,下表為該班學(xué)生瞬時(shí)記憶能力的調(diào)查結(jié)果。例如表中聽覺記憶能力為中等,且視覺記憶能力偏高的學(xué)生為3人。

視覺

聽覺

視覺記憶能力

偏低

中等

偏高

超常

聽覺

記憶

能力

偏低

0

7

5

1

中等

1

8

3

b

偏高

2

a

0

1

超常

0

2

1

1

由于部分?jǐn)?shù)據(jù)丟失,只知道從這40位學(xué)生中隨機(jī)抽取一個(gè),視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的概率為

(1)試確定a,b的值;

(2)從40人中任意抽取3人,設(shè)具有聽覺記憶能力或視覺記憶能力偏高或超常的學(xué)生人數(shù)為X,求隨機(jī)變量X的分布列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,且a1a2=6,a1a2a3.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2){bn}為各項(xiàng)非零的等差數(shù)列,其前n項(xiàng)和為Sn.已知S2n+1bnbn+1,求數(shù)列{}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,平行四邊形的周長(zhǎng)為8,其對(duì)角線的端點(diǎn).

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)已知點(diǎn),記直線與曲線的另一交點(diǎn)為,直線,分別與直線交于點(diǎn),.證明:以線段為直徑的圓恒過點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,假命題是( )

A. B. ,

C. 的充要條件是 D. ,的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角的對(duì)邊分別為,已知.

(1)求角;

(2)求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列的前項(xiàng)和為,且是常數(shù),),.

(1)求的值及數(shù)列的通項(xiàng)公式;

(2)設(shè),數(shù)列的前項(xiàng)和為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題:關(guān)于的不等式無解;命題:指數(shù)函數(shù)是增函數(shù).

(1)若命題為真命題,求的取值范圍;

(2)若滿足為假命題為真命題的實(shí)數(shù)取值范圍是集合,集合,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax+b,x[-1,1],a,bR,且是常數(shù).

(1)a是從-2,-1,0,1,2五個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求函數(shù)y=f(x)為奇函數(shù)的概率;

(2)a是從區(qū)間[-2,2]中任取的一個(gè)數(shù),b是從區(qū)間[0,2]中任取的一個(gè)數(shù),求函數(shù)y=f(x)有零點(diǎn)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案