【題目】在平面直角坐標系xOy中,已知橢圓的左、右焦點分別為F1,F2,點A在橢圓E上且在第一象限內,AF2⊥F1F2,直線AF1與橢圓E相交于另一點B.
(1)求△AF1F2的周長;
(2)在x軸上任取一點P,直線AP與橢圓E的右準線相交于點Q,求的最小值;
(3)設點M在橢圓E上,記△OAB與△MAB的面積分別為S1,S2,若S2=3S1,求點M的坐標.
【答案】(1)6;(2)-4;(3)或.
【解析】
(1)根據橢圓定義可得,從而可求出的周長;
(2)設,根據點在橢圓上,且在第一象限,,求出,根據準線方程得點坐標,再根據向量坐標公式,結合二次函數(shù)性質即可出最小值;
(3)設出設,點到直線的距離為,由點到直線的距離與,可推出,根據點到直線的距離公式,以及滿足橢圓方程,解方程組即可求得坐標.
(1)∵橢圓的方程為
∴,
由橢圓定義可得:.
∴的周長為
(2)設,根據題意可得.
∵點在橢圓上,且在第一象限,
∴
∵準線方程為
∴
∴,當且僅當時取等號.
∴的最小值為.
(3)設,點到直線的距離為.
∵,
∴直線的方程為
∵點到直線的距離為,
∴
∴
∴①
∵②
∴聯(lián)立①②解得,.
∴或.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以原點為極點,以軸為非負半軸為極軸建立極坐標系,兩坐標系相同的長度單位.圓的方程為被圓截得的弦長為.
(Ⅰ)求實數(shù)的值;
(Ⅱ)設圓與直線交于點,若點的坐標為,且,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,點P在直線上運動,請點Q滿足,記點Q的為曲線C.
(1)求曲線C的方程;
(2)設,過點D的直線交曲線C于A,B兩個不同的點,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線E:()與圓O:相交于A,B兩點,且.過劣弧上的動點作圓O的切線交拋物線E于C,D兩點,分別以C,D為切點作拋物線E的切線,,相交于點M.
(1)求拋物線E的方程;
(2)求點M到直線距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,平面,,點分別在棱和棱上,且為棱的中點.
(Ⅰ)求證:;
(Ⅱ)求二面角的正弦值;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)已知圓,圓,動圓與圓外切并且與圓內切,圓心的軌跡為曲線.
(Ⅰ)求的方程;
(Ⅱ)是與圓,圓都相切的一條直線,與曲線交于,兩點,當圓的半徑最長時,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是某學校高三年級的三個班在一學期內的六次數(shù)學測試的平均成績y關于測試序號x的函數(shù)圖象,為了容易看出一個班級的成績變化,將離散的點用虛線連接,根據圖象,給出下列結論:
①一班成績始終高于年級平均水平,整體成績比較好;
②二班成績不夠穩(wěn)定,波動程度較大;
③三班成績雖然多次低于年級平均水平,但在穩(wěn)步提升.
其中錯誤的結論的個數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com