函數(shù)f(x)=-x4+2x2+3的最大值為
4
4
分析:利用換元法設(shè)t=x2,將函數(shù)轉(zhuǎn)化為關(guān)于t的二次函數(shù)y═-t2+2t+3,然后利用二次函數(shù)的圖象和性質(zhì)求最大值.
解答:解:設(shè)t=x2,則t≥0,
則函數(shù)等價為y=-t2+2t+3,t≥0,
∵y=-t2+2t+3═-(t-1)2+4,
當t≥0時,∴當t=1時,y取得最大值4.
故答案為:4
點評:本題主要考查二次函數(shù)的性質(zhì)的應(yīng)用,利用換元法將4次函數(shù)轉(zhuǎn)換為關(guān)于t的二次函數(shù)是解決本題的關(guān)鍵,注意換元后變量的等價性.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.
(Ⅰ)當a=-
103
時,討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)僅在x=0處有極值,求a的取值范圍;
(Ⅲ)若對于任意的a∈[-2,2],不等式f(x)≤1在[-1,1]上恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x4-2ax2,g(x)=1.
(1)求證:函數(shù)f(x)與g(x)的圖象恒有公共點;
(2)當x∈(0,1]時,若函數(shù)f(x)圖象上任一點處切線斜率均小于1,求實數(shù)a的取值范圍;
(3)當x∈[0,1]時,關(guān)于x的不等式|f′(x)|>g(x)的解集為空集,求所有滿足條件的實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果函數(shù)f(x)=x4-x2,那么 f′(i)=(  ) (i是虛數(shù)單位)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x4+ax3+bx2+cx+d.
(1)當a=d=-1,b=c=0時,若函數(shù)f(x)的圖象與x軸所有交點的橫坐標的和與積分別為m,n.
(i)求證:f(x)的圖象與x軸恰有兩個交點;
(ii)求證:m2=n-n3
(2)當a=c,d=1時,設(shè)函數(shù)f(x)有零點,求a2+b2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f′(3)是f(x)的導函數(shù)在x=3時的值,若函數(shù)f(x)=x4-f′(3)x,則f′(3)等于( 。

查看答案和解析>>

同步練習冊答案