已知函數(shù)f(x)=ax3+bx2-x(x∈R,a、b是常數(shù),a≠0),且當(dāng)x=1和x=2時,函數(shù)f(x)取得極值.(I)求函數(shù)f(x)的解析式;

(Ⅱ)若曲線y=f(x)與g(x)=有兩個不同的交點(diǎn),求實(shí)數(shù)m的取值范圍.

 

【答案】

(I)  (Ⅱ) 0≤m<

【解析】

試題分析:解:(1),依題意,,即,

解得,經(jīng)檢驗符合題意! 

(2) 曲線y=f(x)與g(x)兩個不同的交點(diǎn),

在[-2,0]有兩個不同的實(shí)數(shù)解 

設(shè)φ(x)= ,則, 

,得x= 4或x= -1,∵x∈[-2,0],

∴當(dāng)x(-2,-1)時,,于是φ(x)在[-2,-1]上遞增;

當(dāng)x(-1,0)時,,于是φ(x)在[-1,0]上遞減.   

依題意有  

解得0≤m< 

考點(diǎn):導(dǎo)數(shù)的應(yīng)用

點(diǎn)評:導(dǎo)數(shù)常應(yīng)用于求曲線的切線方程、求函數(shù)的最值與單調(diào)區(qū)間、證明不等式和解不等式中參數(shù)的取值范圍等。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
12x+1

(1)求證:不論a為何實(shí)數(shù)f(x)總是為增函數(shù);
(2)確定a的值,使f(x)為奇函數(shù);
(3)當(dāng)f(x)為奇函數(shù)時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)圖象經(jīng)過點(diǎn)Q(8,6).
(1)求a的值,并在直線坐標(biāo)系中畫出函數(shù)f(x)的大致圖象;
(2)求函數(shù)f(t)-9的零點(diǎn);
(3)設(shè)q(t)=f(t+1)-f(t)(t∈R),求函數(shù)q(t)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
1
2x+1
,若f(x)為奇函數(shù),則a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a(x-1)x2
,其中a>0.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若直線x-y-1=0是曲線y=f(x)的切線,求實(shí)數(shù)a的值;
(III)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定義域;
(2)若f(x)為奇函數(shù),求a的值;
(3)考察f(x)在定義域上單調(diào)性的情況,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案