2.下列說法正確的是( 。
A.“x<1”是“l(fā)og2(x+1)<1”的充分不必要條件
B.命題“?x>0,2x>1”的否定是“$?{x_0}≤0,{2^{x_0}}≤1$”
C.命題“若a≤b,則ac2≤bc2”的逆命題為真命題
D.命題“若a+b≠5,則a≠2或b≠3”為真命題.

分析 對每個(gè)選項(xiàng),分別利用充要條件,命題的否定,四種命題的逆否關(guān)系,判斷正誤即可.

解答 解:選項(xiàng)A:log2(x+1)<1可得-1<x<1,所以“x<1”是其必要不充分條件;
選項(xiàng)B:“?x>0,2x>1”的否定是“?x0>0,2x0≤1”,故B錯(cuò)誤;
選項(xiàng)C:命題“若a≤b,則ac2≤bc2”的逆命題是“若ac2≤bc2,則a≤b”,
當(dāng)c=0時(shí),不成立;
選項(xiàng)D:其逆否命題為“若a=2且b=3,則a+b=5”為真命題,故原命題為真.
故選:D

點(diǎn)評 本題考查命題的真假的判斷與應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=sinx.
(1)當(dāng)x>0時(shí),證明:${f^'}(x)>1-\frac{x^2}{2}$;
(2)若當(dāng)$x∈(0,\frac{π}{2})$時(shí),$f(x)+\frac{f(x)}{{{f^'}(x)}}>ax$恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an},{bn}滿足a1=1,且an,an+1是方程x2-bnx+3n=0的兩根,則b8等于( 。
A.54B.108C.162D.324

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.第24屆國際數(shù)學(xué)家大會會標(biāo)是以我國古代數(shù)學(xué)家趙爽的弦圖為基礎(chǔ)進(jìn)行設(shè)計(jì)的.如下圖會標(biāo)是由四個(gè)全等的直角三角形與一個(gè)小正方形拼成的一個(gè)大正方形,如果小正方形的面積為1,大正方形的面積為25,直角三角形中較大的銳角為θ,那么$sin({θ+\frac{π}{3}})$=$\frac{{4+3\sqrt{3}}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知全集U={1,3,5,7,9},集合A={1,5},B={3,5},則∁UA∩∁UB=( 。
A.{7,9}B.{1,3,7,9}C.{5}D.{1,3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函數(shù)f(x)在(0,+∞)上的最小值;
(2)對一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若冪函數(shù)y=mxα(m,α∈R)的圖象經(jīng)過點(diǎn)$(8,\frac{1}{4})$,則α=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.命題p:關(guān)于x的不等式x2+(a-1)x+a2≤0的解集為∅;
命題q:函數(shù)y=(2a2-a)x增函數(shù).若p∨q是真命題p∧q是假命題.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.給出下列命題:
①已知a,b都是正數(shù),且$\frac{a+1}{b+1}>\frac{a}$,則a<b;
②已知f'(x)是f(x)的導(dǎo)函數(shù),若?x∈R,f'(x)≥0,則f'(1)<f(2)一定成立;
③命題“?x∈R,使得x2-2x+1<0”的否定是真命題;
④x≤1且y≤1是“x+y≤2”的充要條件;
⑤將23(10)化成二進(jìn)位制數(shù)是10111(2);
⑥某同學(xué)研究變量x,y之間的相關(guān)關(guān)系,并求得回歸直線方程:他得出一個(gè)結(jié)論:y與x正相關(guān)且$\widehaty=-4.326x-4.5$.其中正確的命題的序號是①③⑤(把你認(rèn)為正確的序號都填上)

查看答案和解析>>

同步練習(xí)冊答案