分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義結(jié)合數(shù)形結(jié)合進(jìn)行求解即可.
解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
直線y=ax+a-1=a(x+1)-1,過定點(diǎn)D(-1,-1),
y≤ax+a-1恒成立等價(jià)為可行域都在直線y=ax+a-1下方,
則由圖象知只要A(0,1)滿足y≤ax+a-1且a>0即可,
即$\left\{\begin{array}{l}{a>0}\\{1≤a-1}\end{array}\right.$得$\left\{\begin{array}{l}{a>0}\\{a≥2}\end{array}\right.$,即a≥2,
故答案為:a≥2
點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)可行域與直線的關(guān)系結(jié)合數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{8}$ | B. | $\frac{π}{8}+\frac{1}{4}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{4}+\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,$\frac{1}{2}$]∪[2,+∞) | B. | [$\frac{1}{2}$,2] | C. | (-∞,-2]∪[-$\frac{1}{2}$,+∞) | D. | [-$\frac{1}{2}$,-2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2017}{1009}$ | B. | $\frac{2017}{2018}$ | C. | $\frac{1}{2017}$ | D. | $\frac{1}{2018}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com