4.若集合A={x|x2-2x-8<0},B={x|x-m<0}.
(1)若全集U=R,求∁UA;
(2)若A∩B=A,求實(shí)數(shù)m的取值范圍.

分析 (1)化簡(jiǎn)集合A,根據(jù)補(bǔ)集的定義寫(xiě)出CUA;
(2)化簡(jiǎn)集合B,根據(jù)A∩B=A得A⊆B,從而寫(xiě)出取值范圍.

解答 解:(1)A={x|x2-2x-8<0}={x|-2<x<4},
∴CUA={x|x≤-2或x≥4};
(2)B={x|x-m<0}={x|x<m},
由A∩B=A,得A⊆B,
∴m≥4.

點(diǎn)評(píng) 本題考查了集合的定義與運(yùn)算問(wèn)題,也考查了不等式的解法與應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)直線3x+4y-5=0與圓C1:x2+y2=9交于A,B兩點(diǎn),若圓C2的圓心在線段AB上,且圓C2與圓C1相切,切點(diǎn)在圓C1的劣弧AB上,則圓C2半徑的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知9a=3,lnx=a,則x=$\sqrt{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)命題p:?x∈R,x2+1>0,則¬p為(  )
A.$?{x_0}∈R,{x^2}+1>0$B.$?{x_0}∈R,{x^2}+1≤0$C.$?{x_0}∈R,{x^2}+1<0$D.$?{x_0}∈R,{x^2}+1≤0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)f(x)=log3x+x-3的零點(diǎn)所在的區(qū)間是(  )
A.(0,2)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知集合A={x|$\frac{x-2}{x}$≤0},B={0,1,2,3},則A∩B=( 。
A.{1,2}B.{0,1,2}C.{1}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖所示的程序框圖,輸出的S=88

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=x-lnx+h在區(qū)間$[{\frac{1}{e},{e^2}}]$上任取三個(gè)實(shí)數(shù)a,b,c,均存在以f(a),f(b),f(c)為邊長(zhǎng)的三角形,則實(shí)數(shù)h的取值范圍是(  )
A.(-∞,e2B.(-∞,e2-4)C.(e2,+∞)D.(e2-4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.對(duì)于每個(gè)實(shí)數(shù)x,設(shè)f(x)取$y=2\sqrt{x}$,y=|x-2|兩個(gè)函數(shù)中的較小值.若動(dòng)直線y=m與函數(shù)y=f(x)的圖象有三個(gè)不同的交點(diǎn),它們的橫坐標(biāo)分別為x1、x2、x3,則x1+x2+x3的取值范圍是( 。
A.(2,$6-2\sqrt{3}$)B.(2,$\sqrt{3}+1$)C.(4,$8-2\sqrt{3}$)D.(0,$4-2\sqrt{3}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案