設(shè)
(1)若f(x)在x=1處 切線的斜率恰好為1,求a的值;
(2)若f(x)在(0,1)內(nèi)遞減,求a的取值范圍;又若此時f(x)在x1處取極小值,在x2處取極大值,判斷x1、x2與0和1的大小關(guān)系.
【答案】分析:(1)先求函數(shù)的導(dǎo)函數(shù),然后求出在x=1處的導(dǎo)數(shù),從而建立方程,解之即可求出a的值;
(2)根據(jù)f(x)在(0,1)內(nèi)遞減則在(0,1)內(nèi)有f'(x)≤0恒成立,建立不等關(guān)系可求出a的取值范圍,由f'(x)的圖象知x1、x2與0和1的大小關(guān)系.
解答:解:(1)f'(x)=x2-2ax+(a-1)…(3分)
∵f'(1)=1⇒a=-1…(6分)
(2)依題意,在(0,1)內(nèi)有f'(x)≤0恒成立⇒⇒0≤a≤1…(9分)
又由f'(x)的圖象知,f'(x)與x軸的交點應(yīng)該在(0,1)的兩側(cè),

且在左側(cè)的為f(x)的極大值,右側(cè)的為極小值,故x2≤0<1≤x1…(13分)
點評:本題主要考查了利用導(dǎo)數(shù)研究曲線上某點切線方程,以及恒成立問題,同時考查了轉(zhuǎn)化的思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湛江二模)設(shè)x=1是函數(shù)f(x)=
x+b
x+1
e-ax
的一個極值點(a>0,e為自然對數(shù)的底).
(1)求a與b的關(guān)系式(用a表示b),并求f(x)的單調(diào)區(qū)間;
(2)設(shè)m>-1,若f(x)在閉區(qū)間[m,m+1]上的最小值為0,最大值為
1
2
e-a
,求m與a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年湖北省宜昌一中高三數(shù)學(xué)單元測試:數(shù)學(xué)歸納法、極限、導(dǎo)數(shù)(解析版) 題型:解答題

設(shè)函數(shù)
(1)若f(x)在x=0處的極限存在,求a,b的值;
(2)若f(x)在x=0處連續(xù),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年江蘇省高考數(shù)學(xué)全真模擬試卷(3)(解析版) 題型:解答題

已知函數(shù)f(x)=x2+bx+c(b,c∈R),并設(shè),
(1)若F(x)圖象在x=0處的切線方程為x-y=0,求b、c的值;
(2)若函數(shù)F(x)是(-∞,+∞)上單調(diào)遞減,則
①當(dāng)x≥0時,試判斷f(x)與(x+c)2的大小關(guān)系,并證明之;
②對滿足題設(shè)條件的任意b、c,不等式f(c)-Mc2≤f(b)-Mb2恒成立,求M的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省高考數(shù)學(xué)仿真押題試卷(01)(解析版) 題型:解答題

已知函數(shù)f(x)=x2+bx+c(b,c∈R),并設(shè),
(1)若F(x)圖象在x=0處的切線方程為x-y=0,求b、c的值;
(2)若函數(shù)F(x)是(-∞,+∞)上單調(diào)遞減,則
①當(dāng)x≥0時,試判斷f(x)與(x+c)2的大小關(guān)系,并證明之;
②對滿足題設(shè)條件的任意b、c,不等式f(c)-Mc2≤f(b)-Mb2恒成立,求M的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案