已知變量x,y滿足
x≥1
y≥1
x+y-3≤0
目標函數(shù)是z=2x+y,z的最大值是( 。
A、2B、3C、4D、5
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,求最大值.
解答: 解:作出不等式組對應的平面區(qū)域如圖:(陰影部分).
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當直線y=-2x+z經(jīng)過點C時,直線y=-2x+z的截距最大,
此時z最大.
y=1
x+y=3
,解得
x=2
y=1
,即C(2,1),
代入目標函數(shù)z=2x+y得z=2×2+1=4+1=5.
即目標函數(shù)z=2x+y的最大值為5.
故選:D.
點評:本題主要考查線性規(guī)劃的應用,利用目標函數(shù)的幾何意義,結合數(shù)形結合的數(shù)學思想是解決此類問題的基本方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,以原點O為極點,x軸正半軸為極軸建立極坐標系,已知曲線C1的極坐標方程為ρ=1,曲線C2的參數(shù)方程為
x=1+2cosα
y=1+2sinα
(α為參數(shù)).則兩曲線的公共弦長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式組
y≤x
y≥-x
2x-y-3≤0
表示的平面區(qū)域為M,x2+y2≤1所表示的平面區(qū)域為N,現(xiàn)隨機向區(qū)域M內拋一粒豆子,則豆子落在區(qū)域N內的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(4,4,0),B(3,a,a-2),且|AB|=
3

(1)若點C的坐標為(2,2,2),求證:A,B,C三點共線.
(2)若點D的坐標為(5,4,1),試判斷△ABD的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列幾種推理過程是演繹推理的是(  )
A、某校高三1班55人,2班54人,3班52人,由此得高三所有班級的人數(shù)超過50人
B、兩條直線平行,同旁內角互補,如果∠A與∠B是兩條平行直線的同旁內角,則∠A+∠B=180°
C、由圓的周長C=πd推測球的表面積S=πd2
D、在數(shù)列{an}中,a1=1,an=
1
2
(an-1+
1
an-1
)(n≥2)
,由此歸納數(shù)列{an}的通項公式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點M(x,y)的坐標滿足
x-y+5≥0
x+y≥0
x≤3
,N(1,-3),O為坐標原點,則
ON
OM
的最小值是( 。
A、-21B、12C、-6D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,已知M(-a,0),N(a,0),其中a∈R,若直線l上有且只有一點P,使得|PM|+|PN|=10,則稱直線l為“黃金直線”,點P為“黃金點”.由此定義可判斷以下說法中正確的是
 

①當a=7時,坐標平面內不存在黃金直線;
②當a=5時,坐標平面內有無數(shù)條黃金直線;
③當a=3時,黃金點的軌跡是個橢圓;
④當a=0時,坐標平面內有且只有1條黃金直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lg(ax-bx)+2x中,常數(shù)a、b滿足a>1>b>0,且a=b+1,那么f(x)>2的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,既是奇函數(shù)又是增函數(shù)的是(  )
A、y=-x
B、y=x3+1
C、y=sinx
D、y=x|x|

查看答案和解析>>

同步練習冊答案