已知集合A={x|0<x<2},B={x|y=ln(x2-1)},則A∪B=( 。
A、(0,1)
B、(1,2)
C、(-∞,-1)∪(0,+∞)
D、(-∞,-1)∪(1,+∞)
考點(diǎn):并集及其運(yùn)算
專題:集合
分析:求出B中x的范圍確定出B,找出A與B的并集即可.
解答: 解:由B中y=ln(x2-1),得到x2-1>0,即x2>1,
解得:x>1或x<-1,即B=(-∞,-1)∪(1,+∞),
∵A=(0,2),
∴A∪B=(-∞,-1)∪(0,+∞),
故選:C.
點(diǎn)評(píng):此題考查了并集及其運(yùn)算,熟練掌握并集的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若A={x|x2-2x-3<0},B={x|
1
x
≥1},則A∩(∁RB)( 。
A、(-1,0)
B、(0,3)
C、(-1,0)∪[1,3)
D、(-1,0]∪(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合P={0,1,-
2
},Q={y|y=cosx,x∈R},則P∩Q=(  )
A、{0}B、{1}
C、{0,1}D、{-1,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:函數(shù)y=
1
x
在定義域上為減函數(shù);命題q:a,b是任意實(shí)數(shù),若a>b>-1,則
1
a+1
1
b+1
,則( 。
A、“p或q”為假
B、“p且q”為真
C、p假q真
D、p真q假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC的內(nèi)角A,B,C所對(duì)的邊a,b,c滿足(a+b)2-c2=4,且C=60°,則△ABC的面積為( 。
A、
3
3
B、
1
3
C、
3
6
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x(x-2)≤0},B={x|log2(x-1)≤0},則A∩B=( 。
A、[1,2]
B、(0,2]
C、(1,2]
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足
x≥0
y≥0
ax-2y-2(a-2)≥0
2x+a2y-2(a2+2)≤0
,當(dāng)a∈(0,2)時(shí),x+3y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},a1=1,前n項(xiàng)和Sn滿足nSn+1-(n+3)Sn=0,
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)若bn=4(
an
n
2,求數(shù)列{(-1)nbn}的前n項(xiàng)和Tn;
(Ⅲ)設(shè)Cn=2n
n
an
-λ),若數(shù)列{Cn}是單調(diào)遞減數(shù)列,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinωx•cosωx-cos2ωx(ω>0)的最小正周期為
π
2

(Ⅰ)求f(x)的解析式;
(Ⅱ)設(shè)△ABC的三邊是a,b,c,且邊b所對(duì)的角x為f(x)=0的解,求角B的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案