9.已知全集U=R,集合A={x|1<2x-1<5},B={y|y=($\frac{1}{2}$)x,x≥-2}.
(1)求(∁UA)∩B;
(2)若集合C={x|a-1<x-a<1},且C⊆A,求實數(shù)a的取值范圍.

分析 (1)先化簡A,B,根據(jù)集合的交補即可求出答案.
(2)要分C等于空集和不等于空集兩種情況.再根據(jù)C⊆A求出a的取值范圍.

解答 解:(1)由集合A={x|1<2x-1<5}={x|1<x<3},
∴CUA={x|x≤1,或x≥3}
∵B={y|y=($\frac{1}{2}$)x,x≥-2}={y|0<y≤4}
∴(CUA)∩B={x|0<x≤1,或3≤x≤4},
(2)C={x|a-1<x-a<1}={x|2a-1<x<a+1},
當(dāng)2a-1≥a+1時,即a≥2時,C=∅,滿足C⊆A,
當(dāng)a<2時,由題意$\left\{\begin{array}{l}{2a-1≥1}\\{a+1≤3}\end{array}\right.$,解得1≤a<2,
綜上,實數(shù)a的取值范圍是[1,+∞)

點評 本題主要考查集合的基本運算,屬于基礎(chǔ)題.要正確判斷兩個集合間相等的關(guān)系,必須對集合的相關(guān)概念有深刻的理解,善于抓住代表元素,認(rèn)清集合的特征.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.二項式(ax2-$\frac{2}{\sqrt{x}}$)n展開式的二項式系數(shù)之和為32,其中常數(shù)項為160,則a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=cos2x+sinxcosx-$\frac{1}{2}$,x∈R.
(Ⅰ)求函數(shù)f(x)的圖象的對稱軸方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅲ)求f(x)在區(qū)間[0,$\frac{π}{2}$]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=2x+2ax(a為實數(shù)),且f(1)=$\frac{5}{2}$.
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)的奇偶性并證明;
(3)判斷函數(shù)f(x)在區(qū)間[0,+∞)的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在平面直角坐標(biāo)系xOy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的最大值是( 。
A.$\frac{2}{3}$B.$\frac{4}{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若x、y滿足約束條件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}\right.$,且目標(biāo)函數(shù)z=ax+2y僅在點(1,0)處取得最小值,則a的取值范圍是( 。
A.(-1,2)B.(-4,2)C.(-4,0)D.(-2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.將函數(shù)y=sin(2x+$\frac{π}{6}$)的圖象向左平移$\frac{π}{3}$個單位,所得函數(shù)的解析式為( 。
A.$y=sin({2x+\frac{5π}{6}})$B.y=-cos2xC.y=cos2xD.$y=sin({2x-\frac{π}{6}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=ex-$\frac{a}{x}$,a,f(x)為實數(shù).
(1)當(dāng)a>0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)在(0,+∞)上存在極值點,且極值大于ln4+2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)=sin(x+φ)是偶函數(shù),則φ可取一個值為( 。
A.B.-$\frac{π}{2}$C.$\frac{π}{4}$D.

查看答案和解析>>

同步練習(xí)冊答案