(本小題滿分12分)

某工廠計(jì)劃生產(chǎn)甲、乙兩種產(chǎn)品,這兩種產(chǎn)品都需要兩種原料。生產(chǎn)甲產(chǎn)品1工時(shí)需要A種原料3kg,B種原料1 kg;生產(chǎn)乙產(chǎn)品1工時(shí)需要A種原料2kg,B種原料2kg,F(xiàn)有A種原料1200 kg,B種原料800 kg。如果生產(chǎn)甲產(chǎn)品每工時(shí)的平均利潤(rùn)是30元,生產(chǎn)乙產(chǎn)品每工時(shí)的平均利潤(rùn)是40元,問(wèn)甲、乙兩種產(chǎn)品各生產(chǎn)多少工時(shí)能使利潤(rùn)的總額最大?最大利潤(rùn)是多少?

 

【答案】

生產(chǎn)甲種產(chǎn)品200工時(shí),生產(chǎn)乙種產(chǎn)品300工時(shí),獲得利潤(rùn)總額最大18000元

【解析】

試題分析:.解:設(shè)計(jì)劃生產(chǎn)甲種產(chǎn)品x工時(shí),生產(chǎn)乙種產(chǎn)品y工時(shí),則獲得利潤(rùn)總額為

由題意得區(qū)域如圖

作過(guò)原點(diǎn)的直線,平移經(jīng)過(guò)點(diǎn)(200,300)時(shí)縱截距最大

所以當(dāng)x=200,y=300時(shí),

所以生產(chǎn)甲種產(chǎn)品200工時(shí),生產(chǎn)乙種產(chǎn)品300工時(shí),獲得利潤(rùn)總額最大18000元

考點(diǎn):本試題考查了線性回歸的實(shí)際應(yīng)用。

點(diǎn)評(píng):解決該試題的關(guān)鍵是要根據(jù)題意,將實(shí)際問(wèn)題轉(zhuǎn)換為數(shù)學(xué)問(wèn)題,抽象出不等式的關(guān)系,進(jìn)而得到不等式組,結(jié)合圖象法,結(jié)合線性回歸的知識(shí)來(lái)分析得到最值問(wèn)題,屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過(guò)點(diǎn)M作MM1丄y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬(wàn)元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫(xiě)出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.

查看答案和解析>>

同步練習(xí)冊(cè)答案