【題目】已知拋物線過(guò)點(diǎn),是拋物線上不同兩點(diǎn),且(其中是坐標(biāo)原點(diǎn)),直線交于點(diǎn),線段的中點(diǎn)為.

(Ⅰ)求拋物線的準(zhǔn)線方程;

(Ⅱ)求證:直線軸平行.

【答案】(1) .(2)見(jiàn)解析.

【解析】

(Ⅰ)把點(diǎn)代入即可求出p的值,可得拋物線C的準(zhǔn)線方程,

(Ⅱ)由題意可設(shè)直線AB的方程為yx+m,設(shè)Ax1y1),Bx2,y2),由題意可得y1+y22,即可求出點(diǎn)Q的縱坐標(biāo),再分別求出直線OA,BM的方程,求出點(diǎn)P的縱坐標(biāo),即可證明.

(Ⅰ)由題意得 ,解得

所以拋物線的準(zhǔn)線方程為

(Ⅱ)設(shè),

,則,所以

所以線段中點(diǎn)的為縱坐標(biāo)

直線方程為┅①

直線方程為┅②

聯(lián)立①②解得,即點(diǎn)的為縱坐標(biāo)

如果直線斜率不存在,結(jié)論也顯然成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠的機(jī)器上存在一種易損元件,這種元件發(fā)生損壞時(shí),需要及時(shí)維修. 現(xiàn)有甲、乙兩名工人同時(shí)從事這項(xiàng)工作,下表記錄了某月1日到10日甲、乙兩名工人分別維修這種元件的件數(shù).

日期

1

2

3

4

5

6

7

8

9

10

甲維修的元件數(shù)

3

5

4

6

4

6

3

7

8

4

乙維修的元件數(shù)

4

7

4

5

5

4

5

5

4

7

1)從這天中,隨機(jī)選取一天,求甲維修的元件數(shù)不少于5件的概率;

2)試比較這10天中甲維修的元件數(shù)的方差與乙維修的元件數(shù)的方差的大小.(只需寫(xiě)出結(jié)論);

3)由于甲、乙的任務(wù)量大,擬增加工人,為使增加工人后平均每人每天維修的元件不超過(guò)3件,請(qǐng)利用上表數(shù)據(jù)估計(jì)最少需要增加幾名工人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,底面是邊長(zhǎng)為4的等邊三角形,的中點(diǎn).

1)證明:平面.

2)若是等邊三角形,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某區(qū)的區(qū)人大代表有教師6人,分別來(lái)自甲、乙、丙、丁四個(gè)學(xué)校,其中甲校教師記為,乙校教師記為,丙校教師記為,丁校教師記為.現(xiàn)從這6名教師代表中選出3名教師組成十九大報(bào)告宣講團(tuán),要求甲、乙、丙、丁四個(gè)學(xué)校中,每校至多選出1.

(1)請(qǐng)列出十九大報(bào)告宣講團(tuán)組成人員的全部可能結(jié)果;

(2)求教師被選中的概率;

(3)求宣講團(tuán)中沒(méi)有乙校教師代表的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十八大以來(lái),我國(guó)新能源產(chǎn)業(yè)迅速發(fā)展.以下是近幾年某新能源產(chǎn)品的年銷(xiāo)售量數(shù)據(jù):

年份

2014

2015

2016

2017

2018

年份代碼

1

2

3

4

5

新能源產(chǎn)品年銷(xiāo)售(萬(wàn)個(gè))

1.6

6.2

17.7

33.1

55.6

(1)請(qǐng)畫(huà)出上表中年份代碼與年銷(xiāo)量的數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷.

中哪一個(gè)更適宜作為年銷(xiāo)售量關(guān)于年份代碼的回歸方程類(lèi)型;

(2)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程,并預(yù)測(cè)2019年某新能源產(chǎn)品的銷(xiāo)售量(精確到0.01).

參考公式:.

參考數(shù)據(jù):,,,,,,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率,且過(guò)點(diǎn)

(1)求橢圓的方程;

(2)如圖,過(guò)橢圓的右焦點(diǎn)作兩條相互垂直的直線交橢圓分別于,且滿足, ,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)為常數(shù),)的圖象關(guān)于直線對(duì)稱(chēng),則函數(shù)的圖象( 。

A. 關(guān)于直線對(duì)稱(chēng)B. 關(guān)于直線對(duì)稱(chēng)

C. 關(guān)于點(diǎn)對(duì)稱(chēng)D. 關(guān)于點(diǎn)對(duì)稱(chēng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩定點(diǎn),點(diǎn)是平面內(nèi)的動(dòng)點(diǎn),且,記的軌跡是

(1)求曲線的方程;

(2)過(guò)點(diǎn)引直線交曲線兩點(diǎn),設(shè),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,證明直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了進(jìn)一步推動(dòng)全市學(xué)習(xí)型黨組織、學(xué)習(xí)型社會(huì)建設(shè),某市組織開(kāi)展“學(xué)習(xí)強(qiáng)國(guó)”知識(shí)測(cè)試,每人測(cè)試文化、經(jīng)濟(jì)兩個(gè)項(xiàng)目,每個(gè)項(xiàng)目滿分均為60分.從全體測(cè)試人員中隨機(jī)抽取了100人,分別統(tǒng)計(jì)他們文化、經(jīng)濟(jì)兩個(gè)項(xiàng)目的測(cè)試成績(jī),得到文化項(xiàng)目測(cè)試成績(jī)的頻數(shù)分布表和經(jīng)濟(jì)項(xiàng)目測(cè)試成績(jī)的頻率分布直方圖如下:

經(jīng)濟(jì)項(xiàng)目測(cè)試成績(jī)頻率分布直方圖

分?jǐn)?shù)區(qū)間

頻數(shù)

2

3

5

15

40

35

文化項(xiàng)目測(cè)試成績(jī)頻數(shù)分布表

將測(cè)試人員的成績(jī)劃分為三個(gè)等級(jí)如下:分?jǐn)?shù)在區(qū)間內(nèi)為一般,分?jǐn)?shù)在區(qū)間內(nèi)為良好,分?jǐn)?shù)在區(qū)間內(nèi)為優(yōu)秀.

(1)在抽取的100人中,經(jīng)濟(jì)項(xiàng)目等級(jí)為優(yōu)秀的測(cè)試人員中女生有14人,經(jīng)濟(jì)項(xiàng)目等級(jí)為一般或良好的測(cè)試人員中女生有34人.填寫(xiě)下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有以上的把握認(rèn)為“經(jīng)濟(jì)項(xiàng)目等級(jí)為優(yōu)秀”與性別有關(guān)?

優(yōu)秀

一般或良好

合計(jì)

男生數(shù)

女生數(shù)

合計(jì)

(2)用這100人的樣本估計(jì)總體,假設(shè)這兩個(gè)項(xiàng)目的測(cè)試成績(jī)相互獨(dú)立.

(i)從該市測(cè)試人員中隨機(jī)抽取1人,估計(jì)其“文化項(xiàng)目等級(jí)高于經(jīng)濟(jì)項(xiàng)目等級(jí)”的概率.

(ii)對(duì)該市文化項(xiàng)目、經(jīng)濟(jì)項(xiàng)目的學(xué)習(xí)成績(jī)進(jìn)行評(píng)價(jià).

附:

0.150

0.050

0.010

2.072

3.841

6.635

.

查看答案和解析>>

同步練習(xí)冊(cè)答案