20.在平面直角坐標(biāo)系xOy中,定義M(x1,y1),N(x2,y2)兩點(diǎn)之間的“直角距離”為|MN|=|x1-x2|+|y1-y2|.對于以下結(jié)論,其中正確的序號是( 。
①O為坐標(biāo)原點(diǎn),滿足條件|OP|=1的點(diǎn)P的軌跡圍成的圖形的面積為2;
②設(shè)A(l,1),B為直線2x-y+3=0上任意一點(diǎn),則|AB|的最小值為2;
③O為坐標(biāo)原點(diǎn),M為曲線x${\;}^{\frac{1}{2}}$+y${\;}^{\frac{1}{2}}$=2上任意一點(diǎn),則|OM|恒等于2.
A.B.①②C.①③D.①②③

分析 根據(jù)已知中M(x1,y1),N(x2,y2)兩點(diǎn)之間的“直角距離”為|MN|=|x1-x2|+|y1-y2|,逐一分析給定三個結(jié)論的真假,可得答案.

解答 解:對于①到原點(diǎn)的“折線距離”等于1的點(diǎn)的集合{(x,y)||x|+|y|=1},
是一個正方形,面積為2,故①正確;

對于②設(shè)直線2x-y+3=0與x=1,y=1的交點(diǎn)分別為(1,5),(-1,1),
當(dāng)B與(-1,1)重合時,|AB|的最小值為2,故②正確;
③O為坐標(biāo)原點(diǎn),M為曲線x${\;}^{\frac{1}{2}}$+y${\;}^{\frac{1}{2}}$=2上任意一點(diǎn),
則當(dāng)M坐標(biāo)為(1,1)時,|OM|取最小值2.
當(dāng)M坐標(biāo)為(0,4),(4,0)時,|OM|取最大值4.
故真命題有:①②.
故選:B.

點(diǎn)評 本題主要考查了“折線距離”的定義,以及分析問題解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的前n項和Sn=n2+2n,正項等比數(shù)列{bn}滿足:b1=a1-1,且b4=2b2+b3
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)若數(shù)列{cn}滿足:cn=$\frac{{a}_{n}}{_{n}}$,其前n項和為Tn,求Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦點(diǎn)為F(1,0),且點(diǎn)$P(1,\frac{3}{2})$在橢圓C上,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{{{b^2}-\frac{5}{3}}}$=1上異于其頂點(diǎn)的任一點(diǎn)P,作圓O:x2+y2=$\frac{4}{3}$的兩條切線,切點(diǎn)分別為M,N(M,N不在坐標(biāo)軸上),若直線MN在x軸、y軸上的截距分別為m、n,證明:$\frac{1}{{3{m^2}}}+\frac{1}{n^2}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}的前n項和Sn=-an-${(\frac{1}{2})^{n-1}}$+2(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{$\frac{n+1}{n}$an}的前n項和為Tn,證明:n∈N*,且n≥3時,Tn>$\frac{5n}{2n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽六安一中高一上國慶作業(yè)二數(shù)學(xué)試卷(解析版) 題型:填空題

已知集合,且,,則的取值范圍是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.向如圖所示的矩形區(qū)域內(nèi)隨機(jī)投100個點(diǎn),陰影面積為以下程序框圖中的輸出的s,當(dāng)輸入的n=10000時,請估算落在陰影區(qū)域內(nèi)的點(diǎn)的個數(shù) (結(jié)果四舍五入)為(  )
A.60B.62C.64D.66

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.定義在R上的函數(shù)f(x)滿足f(1)=1,且2f′(x)<1,當(dāng)x∈[0,2π]時,不等式f(2cosx)<2cos2$\frac{x}{2}$-$\frac{1}{2}$的解集為$[{0,\frac{π}{3}})∪({\frac{5π}{3},2π}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.《九章算術(shù)》有這樣一個問題:今有女子善織,日增等尺,七日織二十一尺,第二日、第五日、第八日所織之和為十五尺,問第十日所織尺數(shù)為( 。
A.6B.9C.12D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊答案