Processing math: 88%
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈囩磽瀹ュ拑韬€殿喖顭烽幃銏ゅ礂鐏忔牗瀚介梺璇查叄濞佳勭珶婵犲伣锝夘敊閸撗咃紲闂佺粯鍔﹂崜娆撳礉閵堝棛绡€闁逞屽墴閺屽棗顓奸崨顖氬Е婵$偑鍊栫敮鎺楀磹瑜版帒鍚归柍褜鍓熼弻锝嗘償閵忕姴姣堥梺鍛婄懃閸燁偊鎮惧畡鎵殾闁搞儜灞绢棥闂佽鍑界徊濠氬礉鐎n€兾旈崨顔规嫼闂侀潻瀵岄崢濂稿礉鐎n喗鐓曢柕濞垮劤缁夎櫣鈧娲橀崝娆撳箖濞嗗浚鍟呮い鏃囨閻︽粓姊绘笟鈧ḿ褔鎮ч崱妞㈡稑螖閸愵亞鐣堕梺绋挎湰缁海澹曟總鍛婄厓鐟滄粓宕滃杈╃當闁绘梻鍘ч悞鍨亜閹哄棗浜鹃梺浼欑到閸㈡煡銈导鏉戦唶妞ゆ劧绲惧▍宥夋⒒娴h櫣甯涢柛銊╂涧铻炴繛鍡樺灍閸嬫捇妫冨☉姘卞姱濠殿喖锕ュ钘壩涢崘銊㈡婵﹩鍓﹂弳顐g節绾版ɑ顫婇柛瀣嚇閵嗗啴宕卞☉妯肩杽闂侀潧饪撮悡鍫澪i崜褏纾藉ù锝勭矙閸濇椽鎮介銈囩瘈妤犵偛鍟撮崺锟犲川椤撶媭妲伴梻浣藉亹閳峰牓宕楀☉姘潟婵犻潧顑嗛埛鎺懨归敐鍫燁仩閻㈩垱绋戦妴鎺戭潩椤撗勭杹閻庤娲樻繛濠囧极閹版澘骞㈡俊顖氭惈娴煎酣姊绘笟鈧埀顒傚仜閼活垱鏅堕幘顔界厸閻忕偟鍋撶粈瀣偓瑙勬礈閸樠囧煘閹达箑鐐婇柤鍝ヮ暜妤犲繘姊婚崒娆戭槮闁圭寽銈嗘噷闂備礁婀遍幊鎾趁洪鐑嗗殨濠电姵鑹鹃悞娲煕閹扳晛濡跨紒鎰仱閺岋綀绠涢弴鐐版勃闂佹悶鍔嶇换鍌炲煝娴犲鏁傞柛娑卞灣閻﹀牓姊洪棃娑氱疄闁搞劍妞藉畷鐢稿焵椤掆偓閳规垿鍩ラ崱妞剧凹缂備浇顕ч崐鍧楀箖閹呮殝闁逛絻娅曢弬鈧梻浣虹《濡狙囧疾濞戙垹绠栭柟杈鹃檮閳锋垹绱掗娑欑濠⒀勭叀閺屾盯寮埀顒傛暜閻愮儤鍤嶉弶鍫涘妿缁♀偓濠殿喗锕╅崢鎼佸箯濞差亝鈷戦柛娑橈功缁犳捇鎮楀鐓庡⒋闁糕斁鍋撳銈嗗笂閻掞箓宕愰幇鐗堢厵妞ゆ梻鐓鍫濈厴闁瑰濮崑鎾绘晲閸涱垯绮甸梺鍝勬噺缁矂鈥旈崘顔嘉ч柛鈩冾殔椤洭姊虹粙鍖℃敾妞ゃ劌鐗婄粩鐔煎即閻旀椽妾紓浣割儓濞夋洘顨ラ崶顒佲拺闁告挻褰冩禍婵堢磼鐎n偄鐏﹀ǎ鍥э躬閹墽浠︾粙澶稿闁荤喐鐟ョ€氼厾绮堥埀顒勬⒑濞茶澧柕鍫熸倐瀹曟椽鍩€椤掍降浜滈柟鐑樺灥閺嬨倖绻涢崗鐓庡缂佺粯鐩畷锝嗗緞閸涱垳绐楅梻浣芥〃缁讹繝宕抽敐澶屽祦闁圭儤鍤﹂弮鍌楀亾閿濆骸澧伴柍绗哄€栫换婵嬫偨闂堟稈鏋呭┑鐐板尃閸ヨ埖鏅為梺鍦濠㈡﹢寮告笟鈧弻娑㈠即閵娿儳浠梺缁樻尪閸ㄧ儤绌辨繝鍥舵晬婵炲棙甯╅崝鍛攽閳╁啫绲婚柛銏$叀閳ワ妇鎹勯妸锕€鏋傞梺鍛婃处閸撴盯藝閺夊簱鏀芥い鏃傘€嬮弨缁樹繆閻愯埖顥夐柣锝囧厴婵℃悂鏁傞崜褏妲囬梻浣告啞濞诧箓宕㈤崜褏鐜绘俊銈呮噺閳锋帒霉閿濆懏鍤堥柛锔诲幐閸嬫挸鈽夐幒鎾寸彆缂備胶绮粙鎺旀崲濠靛鐐婄憸蹇涙偩妤e啯鐓熼煫鍥ㄦ礀娴犫晝鎮▎鎾寸厸閻庯綆浜崣鍕煛瀹€鈧崰鏍嵁閸℃凹妾ㄩ梺鎼炲€楅崰鏍蓟濞戞﹩娼ㄩ柍褜鍓氱粋宥囨崉娓氼垱缍庡┑鐐叉▕娴滄粍瀵奸悩缁樼厱闁哄洢鍔屾晶顕€鏌涚€n亞效婵﹥妞藉畷銊︾節閸愵亜寮抽梻浣规た閸樺ジ宕愰崸妤冨祦闁告劦鐓堝ḿ銊╂煃瑜滈崜鐔肩嵁閸愵喖鐓涢柛娑卞枛娴犳椽姊哄Ч鍥х伄妞わ綆鍠氬Σ鎰板蓟閵夛腹鎷绘繛杈剧秬濞咃絿鏁☉銏$厽闁绘梹娼欓悘鑼偓瑙勬礃閸ㄥ潡鐛Ο鑲╃<婵☆垳鍘ч獮鍫ユ⒒娓氣偓濞佳勭仚闂佺ǹ瀛╂繛濠傜暦濞差亝鏅查柛銉到娴滅偓绻涢崼婵堜虎闁哄绋掗妵鍕敇閵忊剝鏆犳繛锝呮搐閿曨亪鐛弽銊﹀闁告縿鍎遍獮鎰版⒒娴e懙褰掑嫉椤掑嫭鍎楁い鏃€宕樻慨鍐裁归悩宸剱闁抽攱甯掗湁闁挎繂鎳忛崵鍫㈡喐閻楀牆绗掗悗姘槹閵囧嫰骞掗幋婵冨亾婵犳碍鍎楁繛鍡樻尰閻撴瑩寮堕崼鐔峰姢闁伙附绮撻弻鈩冩媴缁嬪簱鍋撻崸妤€钃熼柕濞炬櫆閸嬪棝鏌涚仦鍓р槈妞ゅ骏鎷�濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌涘☉姗堟敾闁告瑥绻橀弻锝夊箣閿濆棭妫勯梺鍝勵儎缁舵岸寮诲☉妯锋婵鐗婇弫楣冩⒑閸涘﹦鎳冪紒缁橈耿瀵鏁愭径濠勵吅闂佹寧绻傚Λ顓炍涢崟顖涒拺闁告繂瀚烽崕搴g磼閼搁潧鍝虹€殿喛顕ч埥澶娢熼柨瀣垫綌婵犳鍠楅〃鍛存偋婵犲洤鏋佸Δ锝呭暞閳锋垿鏌涘☉姗堝姛闁瑰啿鍟扮槐鎺旂磼濮楀牐鈧法鈧鍠栭…鐑藉极閹邦厼绶炲┑鐘插閸氬懘姊绘担鐟邦嚋缂佽鍊歌灋妞ゆ挾鍊e☉銏犵妞ゆ牗绋堥幏娲⒑閸涘﹦绠撻悗姘卞厴瀹曟洘鎯旈敐鍥╋紲闂佸吋鎮傚ḿ褔宕搹鍏夊亾濞堝灝鏋涙い顓犲厴楠炲啴濮€閵堝懐顦ч柣蹇撶箲閻楁鈧矮绮欏铏规嫚閺屻儱寮板┑鐐板尃閸曨厾褰炬繝鐢靛Т娴硷綁鏁愭径妯绘櫓闂佸憡鎸嗛崪鍐簥闂傚倷娴囬鏍垂鎼淬劌绀冮柨婵嗘閻﹁京绱撻崒姘偓椋庢閿熺姴闂い鏇楀亾鐎规洖缍婇獮搴ㄦ寠婢跺矈鍞归梻渚€娼х换鎺撴叏椤撶倣锝夊醇閵夛妇鍘棅顐㈡处濞叉牕鏆╂俊鐐€栭幐璇差渻閽樺娼栨繛宸簻娴肩娀鏌涢弴銊ヤ簼婵炲牊绮撳铏圭矙濞嗘儳鍓遍梺鍦嚀濞差厼顕g拠娴嬫闁靛繒濮堣閺屾稑鈽夐崡鐐碘偓铏规喐閺冨牆钃熼柨娑樺濞岊亪鏌涢幘妤€瀚崹鍗炩攽閻樻鏆滅紒杈ㄦ礋瀹曟顫滈埀顒勫Υ娴g硶鏋庨柟鐐綑娴滄鏌熼悡搴f憼閽冮亶鎮楀顐ょ煓婵﹤顭峰畷鎺戔枎閹邦喓鍋樻繝纰樺墲閵囨粓宕濇惔锝呭灊闁割偆鍠愭刊鎾偣閸ャ儱鍔滄俊鐐扮矙閵嗕礁顫滈埀顒佹叏閳ь剟鏌eΟ鐓庡妺闁硅弓鍗冲缁樻媴閸涘﹥鍎撳┑鐐存綑鐎氼喖危閹版澘鍗抽柕蹇娾偓鍏呯棯闂備線鈧偛鑻晶瀛樻叏婵犲啯銇濈€规洦鍋婂畷鐔碱敆閳ь剛绮e☉銏♀拺缂佸绨遍惇瀣煕鐎n亷鏀诲ǎ鍥э躬閹粓鎳為妷锔界彆闂佸搫顦遍崑鐐寸珶閸℃稒鍎庨幖娣妽閳锋帒霉閿濆洦鍤€妞ゆ洘绮嶆穱濠囶敃閿涘嫮鐛㈠銈冨灪娣囨椽藝閺屻儲鐓冮悹鍥皺瀛濆銈嗘尭閸氬顕ラ崟顓涘亾閿濆骸澧鐐茬У娣囧﹪鎮欓鍕ㄥ亾閺嵮屾綎濠电姵纰嶉崑銈夋煛閸屾氨姘ㄩ柡瀣⒐缁绘繃绻濋崒娑樻珴闂佺ǹ顑嗛幐楣冨箟閹绢喖绀嬫い鎺戝亞濡茬増淇婇悙顏勨偓鎴﹀礉鐏炶娇娑樜旈崪浣规櫔闂侀潧顦弲娑氱矆鐎n偁浜滈柟鐑樺灥閳ь剙顭烽幆渚€宕奸悢铏诡啎闁哄鐗嗘晶浠嬪礆閺夋鐔嗛柣鐔峰簻瀹搞儵鎽堕悙瀵哥瘈濠电姴鍊绘晶娑㈡煃闁垮娴柡灞剧〒娴狅箓骞戦幇顒夋闂備線鈧偛鑻晶瀛樸亜閵夛附灏甸柛鎺撳浮瀹曞ジ鎮㈤搹瑙勫殞闂備線鈧偛鑻晶鎾煟濞戝崬鏋熺€垫澘瀚伴獮鍥敆閸屾瑧绀堥梻浣哄劦閸撴繄鏁繝鍥ㄥ€块柨鏇楀亾妞ゎ亜鍟粋鎺斺偓锝庝簼閻庮剟姊洪崨濠傚Е闁哥姵鐗滄竟鏇㈠礂閸忕厧寮垮┑鈽嗗灥椤曆囧极閸撗呯<闁告鍋涢懜褰掓煃鐟欏嫬鐏撮柟顔规櫊椤㈡瑩鎳栭埡鈧槐姗€姊绘担铏广€婇柡鍛矒閹囨偐閼碱剚娈惧┑鐘绘涧椤戝懘宕¢幎鑺ョ厪闊洦娲栧瓭閻庢鍠氶崗妯侯潖濞差亝顥堟繛鎴i哺瀛濋梻浣告惈閹冲繒鍒掗幘璇茬畺闁跨喓濮甸崑鍕煕韫囨艾浜归柛妯兼暬濮婄粯绗熼崶褍浼庣紓浣哄У閸ㄥ灝顕g粙搴撴闁靛骏绱曢崢閬嶆⒑閸濆嫬鈧綊顢栧▎鎾崇?闁哄啫鐗婇悡娑㈡倶閻愬灚娅曢弫鍫ユ⒑閸濆嫯顫﹂柛鏂块叄閸┾偓妞ゆ帒锕︾粔闈浢瑰⿰鍛沪閻庣數鍘ч悾婵嬪礋椤戣姤瀚奸梺鑽ゅТ濞茬娀鍩€椤掑啯鐝柣蹇撶墢缁辨捇宕掑姣欍垽鏌ㄩ弴銊ら偗闁诡喕鍗抽、娆撴偩瀹€鈧幊婵嬫⒑闁偛鑻晶鎾煟濞戝崬娅嶆鐐村笒铻栭柍褜鍓涚划濠氭晲閸℃瑧鐦堥梺鍓茬厛閸嬪嫭鎱ㄦ径鎰厓鐟滄粓宕滃┑鍡忔瀺闁哄洨濮靛畷鍙夌節闂堟侗鍎愰柛瀣ㄥ姂濮婂宕奸悢琛℃)缂備緡鍠栭悥鐓庮潖濞差亝鍋¢柡澶嬪濮f劗绱撴担铏瑰笡闁挎岸鏌i敐鍛Щ闁宠鍨垮畷杈疀閺冨倵鍋撴繝姘拺閻熸瑥瀚崝銈夋煟閵堝懏鍠樻鐐搭殜瀵挳濮€閳锯偓閹疯櫣绱撻崒娆戝妽閽冮亶鏌嶉柨瀣诞闁哄本绋戣灒闁绘ê寮堕崳浠嬫煟椤撶偞顥㈤柡灞剧洴瀵挳濡搁妷褌鐢婚梻浣虹帛閹稿摜鎹㈠鈧璇测槈閵忊晜鏅濋梺鎸庣箓濞层劑鎮鹃崫鍕垫富闁靛牆鍟崝婊呯磼椤旇偐效濠碉紕鏁诲畷鐔碱敊閸撗勬緫闂備線娼ч¨鈧紒鐘冲灴椤㈡棃鏁撻敓锟�
20.在平面直角坐標系xOy中,定義M(x1,y1),N(x2,y2)兩點之間的“直角距離”為|MN|=|x1-x2|+|y1-y2|.對于以下結論,其中正確的序號是( �。�
①O為坐標原點,滿足條件|OP|=1的點P的軌跡圍成的圖形的面積為2;
②設A(l,1),B為直線2x-y+3=0上任意一點,則|AB|的最小值為2;
③O為坐標原點,M為曲線x12+y12=2上任意一點,則|OM|恒等于2.
A.B.①②C.①③D.①②③

分析 根據(jù)已知中M(x1,y1),N(x2,y2)兩點之間的“直角距離”為|MN|=|x1-x2|+|y1-y2|,逐一分析給定三個結論的真假,可得答案.

解答 解:對于①到原點的“折線距離”等于1的點的集合{(x,y)||x|+|y|=1},
是一個正方形,面積為2,故①正確;

對于②設直線2x-y+3=0與x=1,y=1的交點分別為(1,5),(-1,1),
當B與(-1,1)重合時,|AB|的最小值為2,故②正確;
③O為坐標原點,M為曲線x12+y12=2上任意一點,
則當M坐標為(1,1)時,|OM|取最小值2.
當M坐標為(0,4),(4,0)時,|OM|取最大值4.
故真命題有:①②.
故選:B.

點評 本題主要考查了“折線距離”的定義,以及分析問題解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.已知數(shù)列{an}的前n項和Sn=n2+2n,正項等比數(shù)列{bn}滿足:b1=a1-1,且b4=2b2+b3
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)若數(shù)列{cn}滿足:cn=ann,其前n項和為Tn,求Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知橢圓C:x2a2+y2b2=1(a>b>0)的右焦點為F(1,0),且點P132在橢圓C上,O為坐標原點.
(1)求橢圓C的標準方程;
(2)過橢圓C1x2a2+y2b253=1上異于其頂點的任一點P,作圓O:x2+y2=43的兩條切線,切點分別為M,N(M,N不在坐標軸上),若直線MN在x軸、y軸上的截距分別為m、n,證明:13m2+1n2為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知數(shù)列{an}的前n項和Sn=-an-12n1+2(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{n+1nan}的前n項和為Tn,證明:n∈N*,且n≥3時,Tn5n2n+1

查看答案和解析>>

科目:高中數(shù)學 來源:2016-2017學年安徽六安一中高一上國慶作業(yè)二數(shù)學試卷(解析版) 題型:填空題

已知集合,且,則的取值范圍是_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.向如圖所示的矩形區(qū)域內(nèi)隨機投100個點,陰影面積為以下程序框圖中的輸出的s,當輸入的n=10000時,請估算落在陰影區(qū)域內(nèi)的點的個數(shù) (結果四舍五入)為( �。�
A.60B.62C.64D.66

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.定義在R上的函數(shù)f(x)滿足f(1)=1,且2f′(x)<1,當x∈[0,2π]時,不等式f(2cosx)<2cos2x2-12的解集為[{0,\frac{π}{3}})∪({\frac{5π}{3},2π}]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.《九章算術》有這樣一個問題:今有女子善織,日增等尺,七日織二十一尺,第二日、第五日、第八日所織之和為十五尺,問第十日所織尺數(shù)為( �。�
A.6B.9C.12D.15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.某幾何體的三視圖如圖所示,則該幾何體的體積為\frac{1}{3}

查看答案和解析>>

同步練習冊答案