已知函數(shù)f(x)=lnx,g(x)=ax2+bx(a≠0),設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)的圖象C2交于兩點(diǎn)P、Q,過線段PQ的中點(diǎn)R作x軸垂線分別交C1、C2于點(diǎn)M、N,問是否存在點(diǎn)R,使C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線互相平行?若存在,求出點(diǎn)R的橫坐標(biāo);若不存在,請說明理由.
不存在
【解析】設(shè)點(diǎn)P、Q的坐標(biāo)分別為(x1,y1)、(x2,y2),且0<x2<x1,則點(diǎn)M、N的橫坐標(biāo)均為.
∴C1在點(diǎn)M處的切線斜率為k1=|x==,
C2在點(diǎn)N處的切線斜率為k2=ax+b|x=+b,
假設(shè)C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線互相平行,
則k1=k2,即+b.
∵P、Q是曲線C1、C2的交點(diǎn),∴
兩式相減,得lnx1-lnx2=,
即lnx1-lnx2=(x1-x2) ,
∴lnx1-lnx2=,即ln
設(shè)u=>1,則lnu=,u>1(*).
令r(u)=lnu-,u>1,則r′(u)=.
∵u>1,∴r′(u)>0,∴r(u)在(1,+∞)上單調(diào)遞增,
故r(u)>r(1)=0,則lnu>,
這與上面(*)相矛盾,所以,故假設(shè)不成立.
故C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線不平行.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第1課時練習(xí)卷(解析版) 題型:解答題
已知實(shí)數(shù)a≠0,函數(shù)f(x)=
(1) 若a=-3,求f(10),f(f(10))的值;
(2) 若f(1-a)=f(1+a),求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第13課時練習(xí)卷(解析版) 題型:解答題
我國遼東半島普蘭附近的泥炭層中,發(fā)掘出的古蓮子,至今大部分還能發(fā)芽開花,這些古蓮子是多少年以前的遺物呢?要測定古物的年代,可用放射性碳法.在動植物的體內(nèi)都含有微量的放射性14C,動植物死亡后,停止了新陳代謝,14C不再產(chǎn)生,且原有的14C會自動衰變,經(jīng)過5570年(叫做14C的半衰期),它的殘余量只有原始量的一半,經(jīng)過科學(xué)家測定知道,若14C的原始含量為a,則經(jīng)過t年后的殘余量a′(與a之間滿足a′=a·e-kt).現(xiàn)測得出土的古蓮子中14C殘余量占原量的87.9%,試推算古蓮子的生活年代.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第12課時練習(xí)卷(解析版) 題型:解答題
某地方政府在某地建一座橋,兩端的橋墩相距m米,此工程只需建兩端橋墩之間的橋面和橋墩(包括兩端的橋墩).經(jīng)預(yù)測,一個橋墩的費(fèi)用為256萬元,相鄰兩個橋墩之間的距離均為x,且相鄰兩個橋墩之間的橋面工程費(fèi)用為(1+)x萬元,假設(shè)所有橋墩都視為點(diǎn)且不考慮其他因素,記工程總費(fèi)用為y萬元.
(1)試寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)m=1280米時,需要新建多少個橋墩才能使y最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第12課時練習(xí)卷(解析版) 題型:填空題
用長為90cm、寬為48cm的長方形鐵皮做一個無蓋的容器,先在四角分別截去一個小正方形,然后把四邊翻折90°角,再焊接而成,則該容器的高為________cm時,容器的容積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第11課時練習(xí)卷(解析版) 題型:填空題
記定義在R上的函數(shù)y=f(x)的導(dǎo)函數(shù)為f′(x).如果存在x0∈[a,b],使得f(b)-f(a)=f′(x0)(b-a)成立,則稱x0為函數(shù)f(x)在區(qū)間[a,b]上的“中值點(diǎn)”,那么函數(shù)f(x)=x3-3x在區(qū)間[-2,2]上“中值點(diǎn)”的個數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第11課時練習(xí)卷(解析版) 題型:解答題
某一運(yùn)動物體,在x(s)時離出發(fā)點(diǎn)的距離(單位:m)是f(x)=x3+x2+2x.
(1)求在第1s內(nèi)的平均速度;
(2)求在1s末的瞬時速度;
(3)經(jīng)過多少時間該物體的運(yùn)動速度達(dá)到14m/s?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第10課時練習(xí)卷(解析版) 題型:解答題
(1)已知α、β是方程x2+(2m-1)x+4-2m=0的兩個實(shí)根,且α<2<β,求m的取值范圍;(2)若方程x2+ax+2=0的兩根都小于-1,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第三章第8課時練習(xí)卷(解析版) 題型:解答題
如圖所示,測量河對岸的塔高AB時,可以選與塔底B在同一水平面內(nèi)的兩個測點(diǎn)C與D,現(xiàn)測得∠BCD=α,∠BDC=β,CD=s,并在點(diǎn)C測得塔頂A的仰角為θ,求塔高AB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com