精英家教網 > 高中數學 > 題目詳情

【題目】四棱錐,底面為平行四邊形,側面底面.已知,,為線段的中點.

(1)求證:平面

(2)求平面與平面所成銳二面角的余弦值.

【答案】(1)見解析;(2)

【解析】分析:(1),交于點,連,可得,然后根據線面平行的判定定理可得平面(2)由題意得兩兩垂直,建立空間直角坐標系,求出平面與平面的法向量后,可得兩法向量夾角的余弦值,由此可得所求銳二面角的余弦值.

詳解:(1) 連,交于點,連

∵底面為平行四邊形,

的中點.

又在中,的中點,

,

,

平面

(2)以的中點為原點,分別以軸,建立如圖所示的坐標系.

,,

,

設平面的一個法向量為,

,得

,則

同理設平面的一個法向量為,

,得,

,則

∴平面與平面所成銳二面角的余弦值為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx﹣ x2 , g(x)= x2+x,m∈R,令F(x)=f(x)+g(x). (Ⅰ)求函數f(x)的單調遞增區(qū)間;
(Ⅱ)若關于x的不等式F(x)≤mx﹣1恒成立,求整數m的最小值;
(Ⅲ)若m=﹣1,且正實數x1 , x2滿足F(x1)=﹣F(x2),求證:x1+x2 ﹣1.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在邊長為4的正方形ABCD的邊上有一點P,沿著折線BCDA由點B(起點)向點A(終點)運動.設點P運動的路程為x,APB的面積為y,yx之間的函數關系式用如圖所示的程序框圖給出.

(1)寫出程序框圖中①,,③處應填充的式子.

(2)若輸出的面積y值為6,則路程x的值為多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[2019·牡丹江一中]某校從參加高一年級期末考試的學生中抽取60名學生的成績(均為整數),其成績的頻率分布直方圖如圖所示,由此估計此次考試成績的中位數,眾數和平均數分別是( )

A. 73.3,75,72 B. 73.3,80,73

C. 70,70,76 D. 70,75,75

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】A市某機構為了調查該市市民對我國申辦2034年足球世界杯的態(tài)度,隨機選取了140位市民進行調查,調查結果統計如下:

支持

不支持

總計

男性市民

60

女性市民

50

合計

70

140

(I)根據已知數據,把表格數據填寫完整;

(II)利用(1)完成的表格數據回答下列問題:

(。能否在犯錯誤的概率不超過0.001的前提下認為性別與支持申辦足球世界杯有關;

(ⅱ)已知在被調查的支持申辦足球世界杯的男性市民中有5位退休老人,其中2位是教師,現從這5位退休老人中隨機抽取3人,求至多有1位老師的概率。

附:,其中

0.050

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx﹣ ,g(x)=ax+b.
(1)若函數h(x)=f(x)﹣g(x)在(0,+∞)上單調遞增,求實數a的取值范圍;
(2)若直線g(x)=ax+b是函數f(x)=lnx﹣ 圖象的切線,求a+b的最小值;
(3)當b=0時,若f(x)與g(x)的圖象有兩個交點A(x1 , y1),B(x2 , y2),求證:x1x2>2e2 . (取e為2.8,取ln2為0.7,取 為1.4)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數fx)=x3ax2bx+1的導數滿足,,其中常數abR.

(1)求曲線yfx)在點(1,f(1))處的切線方程;

(2)設,求函數gx)的極值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個函數f(x),如果對任意一個三角形,只要它的三邊長a,b,c都在f(x)的定義域內,就有f(a),f(b),f(c)也是某個三角形的三邊長,則稱f(x)為“三角保型函數”,給出下列函數: ①f(x)= ;②f(x)=x2;③f(x)=2x;④f(x)=lgx,
其中是“三角保型函數”的是(
A.①②
B.①③
C.②③④
D.③④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)的定義域為R,它的導函數y=f′(x)的部分圖象如圖所示,則下面結論正確的是(
A.在(1,2)上函數f(x)為增函數
B.在(3,4)上函數f(x)為減函數
C.在(1,3)上函數f(x)有極大值
D.x=3是函數f(x)在區(qū)間[1,5]上的極小值點

查看答案和解析>>

同步練習冊答案