若函數(shù)y=為減函數(shù),則a∈________.

答案:
解析:

(,1)


提示:

由0<<1,得<a<1.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:設(shè)計必修一數(shù)學(xué)(人教A版) 人教A版 題型:022

討論函數(shù)y=f[φ(x)]的單調(diào)性時要注意兩點:

(1)若u=φ(x),y=f(u)在所討論的區(qū)間上都是增函數(shù)或都是減函數(shù),則y=f[φ(x)]為________;

(2)若u=φ(x),y=f(u)在所討論的區(qū)間上一個是增函數(shù),另一個是減函數(shù),則y=f[φ(x)]為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)yf(x)是偶函數(shù),其定義域為{x|x≠0},且函數(shù)f(x)在(0,+∞)上是減函數(shù),f(2)=0,則函數(shù)f(x)的零點有                                              (  )

A.唯一一個                     B.兩個

C.至少兩個                     D.無法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=(a2-1)x在(-∞,+∞)上為減函數(shù),則實數(shù)a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆黑龍江虎林高中高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=alnx-x2+1.

(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數(shù)a和b的值;

(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二問中,利用當(dāng)a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,

即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導(dǎo)數(shù)的知識來解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)當(dāng)a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0時恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范圍是

 

查看答案和解析>>

同步練習(xí)冊答案