已知,,試問:

(1)從集合A和集合B中各取一個元素作直角坐標(biāo)系中點的坐標(biāo),共可得到多少個不同的點?

(2)從中取出三個不同的元素組成三位數(shù),從左到右的數(shù)字要逐漸增大,這樣的三位數(shù)有多少個?

(3)從集合中取出一個元素,從集合中取出三個元素,可以組成多少個無重復(fù)數(shù)字且比4000大的自然數(shù)?

解:由已知得:   

(1)從A,B中各取一個元素作為作為坐標(biāo)應(yīng)有種,而4,5,6,7為集合A,B的公共元素,即出現(xiàn)個重復(fù)點,∴=50-16=34 (3分)                                                  

(2),取3個數(shù)后按從小到大的順序排列,共能組成個不同的三位數(shù)。 (3分)                                   

     (3)中取3的有:; 中不取3的有:. 共300個(3分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{log4(an-1)}(n∈N*),且a1=5,a3=65,函數(shù)f(x)=x2-4x+4,設(shè)數(shù)列{bn}的前n項和為Sn=f(n),
(1)求數(shù)列{an}與數(shù)列{bn}的通項公式;
(2)記數(shù)列cn=(an-1)•bn,且{cn}的前n項和為Tn,求Tn;
(3)設(shè)各項均不為零的數(shù)列{dn}中,所有滿足dk•dk+1<0的整數(shù)k的個數(shù)稱為這個數(shù)列的異號數(shù),令dn=
bn-4bn
(n∈N*),試問數(shù)列{dn}是否存在異號數(shù),若存在,請求出;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(0,1)、B(0,2)、C(4t,2t2-1)(t∈R),⊙M是以AC為直徑的圓,再以M為圓心、BM為半徑作圓交x軸交于D、E兩點.
(Ⅰ)若△CDE的面積為14,求此時⊙M的方程;
(Ⅱ)試問:是否存在一條平行于x軸的定直線與⊙M相切?若存在,求出此直線的方程;若不存在,請說明理由;
(Ⅲ)求
BD
BE
+
BE
BD
的最大值,并求此時∠DBE的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x1=
1
3
,xn+1=
x
2
n
+xn-a
.(n∈N*,a為常數(shù))
(1)若a=
1
4
,求證:數(shù)列{lg(xn+
1
2
)}
是等比數(shù)列;
(2)在(1)條件下,求證:xn≤(
5
6
)n-
1
2
,,(n∈N*)

(3)若a=0,試問代數(shù)式
2011
n=1
1
xn+1
的值在哪兩個相鄰的整數(shù)之間?并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+1-aa-x
,a∈R
.利用函數(shù)y=f(x)構(gòu)造一個數(shù)列{xn},方法如下:對于定義域中給定的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n∈N*),…如果取定義域中任一值作為x1,都可以用上述方法構(gòu)造出一個無窮數(shù)列{xn}.
(1)求實數(shù)a的值;
(2)若x1=1,求(x1+1)(x2+1)…(xn+1)的值;
(3)設(shè)Tn=(x1+1)(x2+1)…(xn+1)(n∈N*),試問:是否存在n使得Tn+Tn+1+…+Tn+2006=2006成立,若存在,試確定n及相應(yīng)的x1的值;若不存在,請說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知C0:x2+y2=1和C1
x2
a2
+
y2
b2
=1 (a>b>0).試問:當(dāng)且僅當(dāng)a,b滿足什么條件時,對C1上任意一點P,均存在以P為頂點,與C0外切,與C1內(nèi)接的平行四邊形?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案