已知拋物線y2=2x,定點A的坐標為(,0).
(1)求拋物線上距點A最近的點P的坐標及相應的距離|PA|;
(2)設B(a,0),求拋物線上的點到點B的距離的最小值d.
【答案】分析:(1)設P(x,y)為拋物線上任一點,進而根據(jù)勾股定理可得|PA|2=2+y2利用x的范圍求得|PA|的范圍
(2)依題意可得)|PB|2=(x-a)2+y2=分析當當a-1≥0和a-1<0時|PB|的最小值,進而可求得d.
解答:解:(1)設P(x,y)為拋物線上任一點,
|PA|2=2+y2=2+2x=2+,
∵x∈[0,+∞),∴x=0時,|PA|min=,
此時P(0,0).
(2)|PB|2=(x-a)2+y2=(x-a)2+2x=[x-(a-1)]2+2a-1(x≥0).
①當a-1≥0,即a≥1時,
在x=a-1時,|PB|min2=2a-1;
②當a-1<0,即a<1時,在x=0時,
|PB|min2=a2,故d=
點評:本題主要考查拋物線的應用.綜合了函數(shù)的定義域和值域的問題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=2x,設點A的坐標為(
2
3
,0),則拋物線上距點A最近的點P的坐標為(  )
A、(0,0)
B、(0,1)
C、(1,0)
D、(-2,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知拋物線y2=2x.
(1)在拋物線上任取二點P1(x1,y1),P2(x2,y2),經(jīng)過線段P1P2的中點作直線平行于拋物線的軸,和拋物線交于點P3,證明△P1P2P3的面積為
116
|y1-y2|3
;
(2)經(jīng)過線段P1P3、P2P3的中點分別作直線平行于拋物線的軸,與拋物線依次交于Q1、Q2,試將△P1P3Q1與△P2P3Q2的面積和用y1,y2表示出來;
(3)仿照(2)又可做出四個更小的三角形,如此繼續(xù)下去可以做一系列的三角形,由此設法求出線段P1P2與拋物線所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=2x,設A,B是拋物線上不重合的兩點,且
OA
OB
,
OM
=
OA
+
OB
,O為坐標原點.
(1)若|
OA
|=|
OB
|
,求點M的坐標;
(2)求動點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=2x,過拋物線的焦點F的直線與拋物線相交于A、B兩點,自A、B向準線作垂線,垂足分別為A1、A2,A1F=3,A2F=2,則A1A2=
13
13
..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=2x,
(1)設點A的坐標為(
23
,0)
,求拋物線上距離點A最近的點P的坐標及相應的距離|PA|;
(2)在拋物線上求一點P,使P到直線x-y+3=0的距離最短,并求出距離的最小值.

查看答案和解析>>

同步練習冊答案