(2009•奉賢區(qū)一模)已知定義在R上的奇函數(shù)f(x)滿足f(x-4)=-f(x),且在區(qū)間[0,2]上是增函數(shù).若方程f(x)=m(m>0)在區(qū)間[-8,8]上有四個(gè)不同的根x1,x2,x3,x4,則x1+x2+x3+x4=
-8
-8
分析:由條件“f(x-4)=-f(x)”得f(x+8)=f(x),說(shuō)明此函數(shù)是周期函數(shù),又是奇函數(shù),且在[0,2]上為增函數(shù),
由這些畫(huà)出示意圖,由圖可解決問(wèn)題.
解答:解:此函數(shù)是周期函數(shù),又是奇函數(shù),且在[0,2]上為增函數(shù),
綜合條件得函數(shù)的示意圖,由圖看出,四個(gè)交點(diǎn)中兩個(gè)交點(diǎn)的橫坐標(biāo)之和為2×(-6),
另兩個(gè)交點(diǎn)的橫坐標(biāo)之和為2×2,所以x1+x2+x3+x4=-8.
故答案為-8.
點(diǎn)評(píng):數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問(wèn)題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問(wèn)題便迎刃而解,且解法簡(jiǎn)捷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•奉賢區(qū)一模)已知數(shù)列{an}前n項(xiàng)和Sn=
1
3
an-1
,則數(shù)列{an}的通項(xiàng)公式
an=3•(-
1
2
)n
,或an=-
3
2
•(-
1
2
)n-1
an=3•(-
1
2
)n
,或an=-
3
2
•(-
1
2
)n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•奉賢區(qū)一模)若行列式
.
456
101
sinx81
.
中,元素5的代數(shù)余子式不小于0,則x滿足的條件是
x=2kπ+
π
2
,k∈Z
x=2kπ+
π
2
,k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•奉賢區(qū)一模)已知矩陣A=
cosαsinα
01
,B=
cosβ0
sinβ1
,則AB=
cos(α-β)sinα
sinβ1
cos(α-β)sinα
sinβ1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•奉賢區(qū)一模)已知函數(shù)f(x)=
6
x2+1

(1)在直角坐標(biāo)系中,畫(huà)出函數(shù)f(x)=
6
x2+1
大致圖象.
(2)關(guān)于x的不等式f(x)≥k-7x2的解集一切實(shí)數(shù),求實(shí)數(shù)k的取值范圍;
(3)關(guān)于x的不等式f(x)>
a
x
的解集中的正整數(shù)解有3個(gè),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案