(本小題滿分12分) 甲、乙兩人在一場(chǎng)五局三勝制的象棋比賽中,規(guī)定甲或乙無論誰先贏滿三局就獲勝,并且比賽就此結(jié)束.現(xiàn)已知甲、乙兩人每比賽一局甲取勝的概率是,乙取勝的概率為,且每局比賽的勝負(fù)是獨(dú)立的,試求下列問題:
(Ⅰ)比賽以甲3勝1而結(jié)束的概率;
(Ⅱ)比賽以乙3勝2而結(jié)束的概率;
(Ⅲ)設(shè)甲獲勝的概率為a,乙獲勝的概率為b,求a:b的值.

解: (Ⅰ) 比賽以甲3勝1而結(jié)束,則第四局一定甲勝,前三局中甲勝兩局,     1分
∴所求概率為:.                          3分       
答:比賽以甲3勝1而結(jié)束的概率為.                            4分      
(Ⅱ) 比賽以乙3勝2而結(jié)束,則第五局一定乙勝,前四局中乙勝兩局,         5分
∴所求概率為:                       7分
答:比賽以乙3勝2而結(jié)束的概率為.                           8分
(Ⅲ)甲先勝3局的情況有3種:3勝無敗,3勝1敗,3勝2敗.,則其概率分別為    9分
,=,,            
于是甲獲勝的概率                                 11分
∴乙獲勝的概率     ∴.                     12分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬元.

查看答案和解析>>

同步練習(xí)冊(cè)答案