精英家教網(wǎng)某車間為了制作某個(gè)零件,需從一塊扇形的鋼板余料(如圖1)中按照?qǐng)D2的方式裁剪一塊矩形鋼板ABCD,其中頂點(diǎn)B、C在半徑ON上,頂點(diǎn)A在半徑OM上,頂點(diǎn)D在
NM
上,∠MON=
π
6
,ON=OM=1.設(shè)∠DON=θ,矩形ABCD的面積為S.
(Ⅰ)用含θ的式子表示DC、OB的長(zhǎng);
(Ⅱ)試將S表示為θ的函數(shù);
(Ⅲ)求S的最大值.
分析:(1)直接在三角形中利用三角函數(shù)可以表示DC、OB的長(zhǎng);
(2)S=BC×CD,由(1)可以求出相應(yīng)函數(shù);
(3)表達(dá)成θ的函數(shù)關(guān)系式,再利用導(dǎo)數(shù)方法研究函數(shù)的最大值,
解答:解:(1)在△ODC中DC=sinθ,在△OAB中,tan
π
6
=
AB
OB
,從而OB=
3
sinθ;
(2)在△ODC中OC=cosθ,從而S=BC×CD=cosθsinθ -
3
sin2θ
0<θ<
π
6

(3)由S/=-sin2θ+cos2θ-2
3
sinθcosθ=0
tan2θ=
3
3
,由0<θ<
π
6
,得θ=
π
12
,易得θ=
π
12
時(shí),S的最大值為1-
3
2
點(diǎn)評(píng):解決實(shí)際問(wèn)題的關(guān)鍵在于建立數(shù)學(xué)模型和目標(biāo)函數(shù),把“問(wèn)題情境”譯為數(shù)學(xué)語(yǔ)言,找出問(wèn)題的主要關(guān)系,并把問(wèn)題的主要關(guān)系抽象成數(shù)學(xué)問(wèn)題,在數(shù)學(xué)領(lǐng)域?qū)ふ疫m當(dāng)?shù)姆椒ń鉀Q,再返回到實(shí)際問(wèn)題中加以說(shuō)明.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次實(shí)驗(yàn),得到的數(shù)據(jù)如下表:
零件的個(gè)數(shù)x(個(gè)) 2 3 4 5
加工的時(shí)間y(小時(shí)) 2.5 3.0 4.0 4.5
(1)求出y關(guān)x的線性回歸方程
y
=
b
x+
a
;
(2)試預(yù)測(cè)加工20個(gè)零件需要多少時(shí)間?(參考公式:
b
=
n
i=1
xiyi-n•
.
x
.
y
n
i=1
xi2-n
.
x
2
a
 =
.
b
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某車間為了規(guī)定工時(shí)定額,需要確定加個(gè)某零件所花費(fèi)的時(shí)間,為此作了四次實(shí)驗(yàn),得到的數(shù)據(jù)如下:
零件的個(gè)數(shù)x(個(gè)) 2 3 4 5
加工的時(shí)間y(小時(shí)) 2.5 3 4 4.5
(1)求出y關(guān)于x的線性回歸方程;
(2)試預(yù)測(cè)加工10個(gè)零件需要多少時(shí)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題共12分)

某車間為了制作某個(gè)零件,需從一塊扇形的鋼板余料(如圖1)中按照?qǐng)D2的方式裁剪一塊矩形鋼板,其中頂點(diǎn)、在半徑上,頂點(diǎn)在半徑上,頂點(diǎn)上, ,.設(shè),矩形的面積為.

 


               

(Ⅰ)用含的式子表示、的長(zhǎng);

(Ⅱ)試將表示為的函數(shù);

(Ⅲ)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年北京市海淀區(qū)高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

某車間為了制作某個(gè)零件,需從一塊扇形的鋼板余料(如圖1)中按照?qǐng)D2的方式裁剪一塊矩形鋼板ABCD,其中頂點(diǎn)B、C在半徑ON上,頂點(diǎn)A在半徑OM上,頂點(diǎn)D在上,,ON=OM=1.設(shè)∠DON=θ,矩形ABCD的面積為S.
(Ⅰ)用含θ的式子表示DC、OB的長(zhǎng);
(Ⅱ)試將S表示為θ的函數(shù);
(Ⅲ)求S的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案